

    
      
          
            
  
Welcome to the OTT documentation!

This website provides documentation for the
Optical Tweezers Toolbox (OTT) [https://github.com/ilent2/ott].
OTT is a toolbox for calculating optical forces and torques for particles
in tightly focussed light beams.
This documentation provides information on Getting Started
with the toolbox, Examples for using and extending the toolbox,
and Reference describing the various functions and classes
in the toolbox.

If you publish work using the toolbox, please consider citing it.
This version of the toolbox can be referenced by citing the following
paper


T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M.
Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical
tweezers computational toolbox”, Journal of Optics A 9, S196-S203
(2007) [http://iopscience.iop.org/1464-4258/9/8/S12/]




or by directly citing the toolbox


T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, I. C. D. Lenton, Y.
Hu, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, “Optical tweezers toolbox”,
https://github.com/ilent2/ott
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Introduction

The optical tweezers toolbox can be used to calculate optical forces and
torques of particles using the T-matrix formalism in a vector spherical
wave basis. The toolbox includes codes for calculating T-matrices, beams
described by vector spherical wave functions, functions for calculating
forces and torques, simple codes for simulating dynamics and examples.

To get started using the toolbox, checkout the Getting
Started page.


License

Except where otherwise noted, this toolbox is made available under the
Creative Commons Attribution-NonCommercial 4.0 License. For full details
see LICENSE.md. For use outside the conditions of the license, please
contact us. The toolbox includes some third-party components,
information about these components can be found in the documentation and
corresponding file in the thirdparty directory.

This version of the toolbox can be referenced by citing the following
paper


T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M.
Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical
tweezers computational toolbox”, Journal of Optics A 9, S196-S203
(2007) [http://iopscience.iop.org/1464-4258/9/8/S12/]




or by directly citing the toolbox


I. C. D. Lenton, T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe,
Y. Hu, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H.
Rubinsztein-Dunlop, “Optical tweezers toolbox”,
https://github.com/ilent2/ott




and the respective Bibtex entry

@misc{Lenton2020,
  author = {Lenton, Isaac C. D. and Nieminen, Timo A. and Loke, Vincent L. Y. and Stilgoe, Alexander B. and Y. Hu and Kn{\ifmmode\ddot{o}\else\"{o}\fi}ner, Gregor and Bra{\ifmmode\acute{n}\else\'{n}\fi}czyk, Agata M. and Heckenberg, Norman R. and Rubinsztein-Dunlop, Halina},
  title = {Optical Tweezers Toolbox},
  year = {2020},
  publisher = {GitHub},
  howpublished = {\url{https://github.com/ilent2/ott}},
  commit = {A specific commit or version (optional)}
}







Contributing

If you would like to contribute a feature, report a bug or request we
add something to the toolbox, the easiest way is by creating a new
issue on the OTT GitHub page [https://github.com/ilent2/ott/issues].

If you have code you would like to submit, fork the repository, add the
code and open a new issue. This method is preferable to pasting the code
in the issue or sending it to us via email since your contribution
details will remain attached to the commit you send (tracking
authorship).



Contact us

The best person to contact for inquiries about the toolbox or licensing
is Isaac Lenton





            

          

      

      

    

  

    
      
          
            
  
Getting Started

This section has information about getting started with the toolbox
including information on installation,
using the GUIs
and running the example files.
This section also contains a brief
overview of the toolbox, further
information can be found in the papers listed in
Further Reading.


Installation

To use the toolbox, you will need a recent version of Matlab (at
least R2016b; R2018a is needed for some features; Octave should also work)
and the latest version of OTT.
There are a couple of ways to get OTT.
You can download one of the Matlab toolbox files (with the .mltbx
file extension), or download one of the .zip archives containing
the source code, or download the latest source directly from GitHub.
If you are using Matlab, the easiest method is to install OTT via
the Addons explorer.
The following sub-sections detail each of these methods.


Installing via Matlab Addons Explorer

If using Matlab, the easiest method to install the toolbox is using
the Matlab Addons explorer.
Simply launch Matlab and navigate to Home > Addons > Get-Addons
and search for
“Optical Tweezers Toolbox”.  Then, simply click the
Add from GitHub button to automatically download the package and
add it to the path.
You may need to logging to a Mathworks account to complete this step.



Using a .mltbx file

You can download the latest stable release of OTT from either the
GitHub release page [https://github.com/ilent2/ott/releases].
Simply download the appropriate .mltbx file for the relevant version.
Once downloaded, execute the file and follow the instructions to install
the toolbox.

To change/remove the toolbox, go to Home > Add-ons
> Manage Add-ons and select the toolbox you would like to configure.



Using a .zip or cloning the repository

The latest version of OTT can be downloaded from the
OTT GitHub page [https://github.com/ilent2/ott].
Simply click the Clone or Download button and select your
preferred method of download.
The advantage of cloning the GitHub repository is you can easily switch
between different versions of the toolbox or download the most recent
changes/improvements to the toolbox.
There are a range of online tutorials for getting started with
git and GitHub, for example
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners.

If you are cloning the repository you can checkout different
tags to select the desired release.
Alternatively, for a specific release, navigate to the
release page [https://github.com/ilent2/ott/releases]
and select the .zip file for the desired release.

To install OTT, download the latest version of the toolbox to your
computer, if you downloaded a .zip file, extract the files to
your computer.

Once downloaded, most of the toolbox functionality is ready to use. To
start exploring the functionality of the toolbox immediately, you can
run the examples.
To use the graphical user interface or add the toolbox to your own code,
you will need to make Matlab aware of the toolbox path.
To do this, simply run

addpath('/path/to/toolbox/ott');





Replace the path with the path you placed the downloaded toolbox in. The
folder must contain the +ott directory and the docs directory.
If you downloaded the latest toolbox from GitHub, the final part of the
pathname will either be the repository path (if you used git clone)
or something like ott-master (if you downloaded a ZIP). The above
line can be added to the start of each of your files or for a more
permanent solution you can add it to the Matlab startup
script [https://au.mathworks.com/help/matlab/ref/startup.html].



Post installation

To check that ott installed correctly and can be found by Matlab,
run the following command and verify it displays the contents of the
+ott/Contents.m file

help ott





If you have multiple versions of ott installed, you may want to
check which version is currently being used.
The following command can be used to check the path of the
toolbox currently being found

what ott





Further information about using the toolbox functions and graphical
user interface can be found in subsequent sections.

The toolbox runs on recent versions of Matlab, most functionality
should work on at least R2016b but the graphical user interface might
need R2018a or newer (we have tested the toolbox on R2018a).
Most functionality should work with
[GNU Octave](https://www.gnu.org/software/octave/), however this
has not been tested recently and performance is optimised for Matlab.

Some functionality may require additional dependences including
additional Matlab products.
We are currently working on a full list; feel free to get in contact
if you encounter problems with missing dependencies.
In some cases it is possible to re-write functions to avoid using
specific Matlab toolboxes. If you encounter difficultly using a function
because of a missing Matlab toolbox, let us know and we may be able to
help.




Toolbox Overview

The toolbox includes a collection of functions and classes for calculating
optical forces and torques for particles in various light fields.
The core toolbox files are grouped into a Matlab package (a folder with
a + prefix).  Other components, including examples and documentation,
are provided in separate folders in the directory where OTT was
downloaded/installed.
If you installed OTT by downloading a .zip or cloning the repository,
the OTT path is the directory containing the +ott and docs
directories.
If you installed OTT with a Matlab package or via the Addons explorer,
you can view the OTT directory containing the docs and examples
by navigating to Home > Addons > Manage addons, find the
toolbox and select Options > Open folder.

The following list provides a brief overview of the toolbox parts
and the corresponding folders/file paths:


	Examples (<ott-path>/examples)
	This directory contains examples of various features included in
the toolbox.  Most of these examples are described in the
Examples part of the documentation and information on
running the example files can be
found bellow.



	Graphical user interface (+ott/+ui)
	This sub-package contains the graphical user interface components.
See bellow for information on
using the GUIs.



	BSC and T-matrix classes (+ott/Bsc* and +ott/Tmatrix*)
	The BSC and T-matrix classes represent beams and particles in the
toolbox.  In the vector spherical wave function (VSWF) basis,
beams are represented by vectors describing a superposition of
VSWF components and particles are represented by matrices
which operate on beam-vectors to produce scattered beam-vectors.
The BSC and T-matrix classes behave like regular Matlab
vector and matrix classes but also provide additional functionality
such as functions for visualising fields
and beam related properties (wavelength, numerical aperture, etc.).
Further details can be found in the
Bsc classes and Tmatrix classes reference pages.



	Functions operating on beams and particles (+ott/* functions)
	In addition to the BSC and T-matrix classes, the +ott package
contains a range of other functions for calculating forces
and locating traps.
Further information can be found in Other functions.



	Geometric Shapes (+ott/+shapes)
	This sub-package provides descriptions of Geometric shapes
which are used mostly by the point-matching and DDA routines for
generating T-matrices for particles.
See shapes Package reference pages for more information.



	Utility functions (+ott/+utils)
	This directory contains functions commonly used by other parts of
the toolbox.  Most users will probably not need to access these
directly.
See utils Package reference pages for more information.



	Documentation (<ott-path>/docs)
	This directory contains the restructured text (ReST) used to generate
this documentation.  If you don’t have or prefer not to use a web
browser to view the documentation, you can open these files in most
regular text editors.



	Unit tests (<ott-path>/tests)
	This directory contains functions and scripts for testing the
toolbox functionality.  This is only included in the GitHub version
and you should not need to interact with this directory unless you
are contributing to OTT.





The toolbox doesn’t use any particular units, although most examples will
assume units of dimensionless force \(F_Q\) and torque
\(\tau_Q\) efficiencies.  To convert to SI units:


\[ \begin{align}\begin{aligned}F_{SI} = F_{Q} \frac{nP}{c}\\\tau_{SI} = \tau_{Q} \frac{P}{\omega}\end{aligned}\end{align} \]

where \(n\) is the refractive index of the medium,
\(P\) is the beam power, \(c\) is the speed of light in
vacuum, and \(\omega\) is the optical frequency.
You should be able to use any units as long as you are consistent
with defining parameters.  However, this hasn’t been thoroughly tested,
if you encounter any inconsistencies, please let us know.

To learn more about how the toolbox calculates forces and torques,
take a look at the original paper describing OTT


T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M.
Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical
tweezers computational toolbox”, Journal of Optics A 9, S196-S203
(2007) [http://iopscience.iop.org/1464-4258/9/8/S12/]






Exploring the toolbox with the GUI

The toolbox includes a graphical user interface (GUI) for performing
many of the basic tasks including generating beams, T-matrices and
calculating force profiles.
The user interface can be used to explore the basic functionalities
of the toolbox without writing a single line of code.
The GUIs can be accessed by running the OTSLM Launcher application.
The launcher can be found in the Apps menu (if OTSLM was installed
using a .mltbx file), or run from the file explorer by navigating
to the +ott/+ui directory and running Launcher.mlapp.
Alternatively, you can launch the GUI from the command window with

ott.ui.Launcher





If everything is installed correctly, the launcher should appear,
as depicted in Fig. 1.
The window is split into 4 sections: a description of the toolbox, a
list of GUI categories, a list of applications, and a description about
the selected application. Once you select an application, click Launch.


[image: Launcher]

Fig. 1 Overview of the Launcher application.



BSC and T-matrix generation function need to specify a variable name.
This variable name is used when assigning the object data to the
Matlab workspace.
Other GUIs which support output can also specify a variable name.
Output from one GUI can be used as input to another GUI by specifying
the corresponding variable name as the input.

If an app produces an error or warning, these will be displayed in the
Matlab console.

For a complete example showing how to use the GUI, see
Calculating forces with the GUI



Running the examples

To run the examples, navigate to the examples directory, either following
the instructions above or using the what command:

what_result = what('ott');
ott_path = fileparts(what_result(end).path);
cd([a, '/examples']);





To run an example, open the script and run it (either the full file
or section-by-section).
The first line in most script files is addpath('../'), this line
ensure OTT is added to the path.  If you have already added OTT to the
path or installed OTT as an Add-on, this line is unnecessary.
If you copy the example to another directory, you will need to adjust
the addpath command accordingly.

Further documentation and example output for specific examples can be
found in Examples.





            

          

      

      

    

  

    
      
          
            
  
Examples

This section provides detailed examples to help you get started using
the toolbox.  Further examples scripts and LiveScripts can be found
in the examples directory.



	Calculating forces on a spherical particle
	Setting up the Matlab workspace

	Generating the beam shape coefficients

	Generating the T-matrix

	Calculate the scattered field

	Calculating optical forces

	Beam translations

	Calculate multiple forces with ott.forcetorque





	Simulating vaterite with DDA
	Describing the vaterite properties

	Calculating the T-matrix with DDA

	Calculating torque on the particle





	Combining Beams
	Combining coherent beams

	Combining incoherent beams





	Creating a custom beam
	Using ott.Bsc directly

	Creating a beam with point matching

	Creating a custom Bsc class





	Creating a custom T-matrix

	Calculating forces with the GUI
	Generating a Gaussian beam

	Generating the T-matrix

	Calculating forces












            

          

      

      

    

  

    
      
          
            
  
Calculating forces on a spherical particle

This section is a companion for the examples/example_sphere.m script
and will guide you through the core functionality of the toolbox.
The script sets up the variables for calculating forces on a spherical
particle in a Gaussian beam.  The particle is created using the
ott.Tmatrix.simple() method, which for a spherical particle
calls the ott.TmatrixMie class constructor.
The beam is constructed using the ott.BscPmGauss class which
can also be used for Laguerre-Gaussian and Hermite-Gaussian beam modes.
And, forces are calculated using ott.forcetorque().
A similar example is described in Calculating forces with the GUI.


Contents


	Setting up the Matlab workspace


	Generating the beam shape coefficients


	Generating the T-matrix


	Calculate the scattered field


	Calculating optical forces


	Beam translations


	Calculate multiple forces with ott.forcetorque







Setting up the Matlab workspace

The example_sphere.m script starts by setting up the Matlab workspace
to work with OTT.
The first step is to add OTT to the Matlab path, this step is not required
if OTT is already on the path (for instance, if you installed OTT via the
add-ons menu, OTT should already be on the path).

addpath('../');   % Change this to your OTT path if required





The next step is clearing all existing variables and configuring OTT
specific warnings.  Some OTT functions can trigger many warnings, to
reduce the verbosity of the output, OTT can be asked to only warn once
about issues during this Matlab session.
Several OTT functions are also likely to move in a future release, we
can turn off warnings related to these changes here too.

close all;
ott.warning('once');
ott.change_warnings('off');





Next, we declare our material properties, wavelength, sphere radius and
numerical aperture for the objective.

n_medium = 1.33;        % Water
n_particle = 1.59;      % Polystyrene
wavelength0 = 1064e-9;  % Vacuum wavelength
wavelength_medium = wavelength0 / n_medium;
radius = 1.0*wavelength_medium;
NA = 1.02;              % Numerical aperture of beam







Generating the beam shape coefficients

To create a beam, we use ott.BscPmGauss.
The constructor for this class accepts several positional and named
arguments, in this example we set the numerical aperture, polarisation,
refractive index and vacuum wavelength.

beam = ott.BscPmGauss('NA', NA, 'polarisation', [ 1 1i ], ...
     'index_medium', n_medium, 'wavelength0', wavelength0);





The class can also be used for generating Laguerre-Gaussian beams and
other type of beams by adding additional parameters.  For example,
the following would generate an LG(0, 3) beam

beam = ott.BscPmGauss('lg', [ 0 3 ], ...
     'polarisation', [ 1 1i ], 'NA', NA, ...
     'index_medium', n_medium, 'wavelength0', wavelength0);





We may also want to set or normalise the beam power, this can be done at
any time by setting the power property, for example

beam.power = 1.0;





Regardless of the type of beam we are using, we are now able to visualise
the beam.  The ott.Bsc base class (which ott.BscPmGauss
inherits from) defines several visualisation function.
To visualise the field around the focus, we can use
ott.Bsc.visualise().  Before calling the function we need to
specify the vector spherical wave function basis to use, for near-field
visualisation this should be set to regular.

beam.basis = 'regular';

figure();
subplot(1, 2, 1);
beam.visualise('axis', 'y');
subplot(1, 2, 2);
beam.visualise('axis', 'z');





The above code should produce something similar to figure
Fig. 2.
The axis parameter specifies which axis should be normal to our
visualisation slice.


[image: Visualisation of the beam near-field]

Fig. 2 Visualisation of the incident beam near-field.



We can also visualise the far-field of the beam.
For this we set the basis to incoming and use the
ott.Bsc.visualiseFarfield() function.

beam.basis = 'incoming';

figure();
beam.visualiseFarfield('dir', 'neg');





The above should produce something similar to figure
Fig. 3.
The dir parameter specifies which hemisphere we want to look at,
in this case we look at the negative (backward) hemisphere.
Depending on the beam and the chosen basis, either the forward or backward
hemisphere may have very little power, if you are unsure about the
direction of your beam it is a good idea to look in both directions.


[image: Visualisation of the beam far-field]

Fig. 3 Visualisation of the incident beam far-field.





Generating the T-matrix

In this simulation we use a T-matrix for a spherical particle.
The T-matrix is diagonal and the elements along the diagonal are
the Mie coefficients for a sphere.
To calculate the T-matrix we use the ott.Tmatrix.simple()
method, we specify the shape as a sphere and the method automatically
selects the best method for this shape, in this case
ott.TmatrixMie.
The ott.Tmatrix.simple() method takes various named parameters
for the particle size, shape and refractive index.

T = ott.Tmatrix.simple('sphere', radius, 'wavelength0', wavelength0, ...
   'index_medium', n_medium, 'index_particle', n_particle);





For a sphere, this should only take a couple of seconds to evaluate.



Calculate the scattered field

The T-matrix and beam objects encapsulate the data for the T-matrix
and beam shape coefficients (a matrix and vector respectively).
We can view this data by accessing the data attribute of these objects,
for example

disp(T.data);





In the T-matrix method, a T-matrix describes how a particle scatters
light.  It is a linear matrix which relates each incident mode to
each scattered mode, mathematically this is


\[\begin{split}\left(\begin{array}{l}p \\ q\end{array}\right) =
   T \left(\begin{array}{l}a \\ b\end{array}\right)\end{split}\]

where \(T\) is the T-matrix, and \((a,b)\),
\((p, q)\) are the incident and scattered beam shape coefficients.
To implement this in OTT, we can simply write

sbeam = T * beam;





This is equivalent to directly multiplying the
T.data and beam.data matrix and vector objects to calculate
the resulting scattered beam shape coefficients, and encapsulating
the result in a ott.Bsc object.

As with the incident beam, we are able to generate various visualisations
of the fields.
The following example shows a visualisation of the scattered field
and the total field (incident + scattered) around the beam focus,
for the sphere and Gaussian beam described above, the results are
shown in Fig. 4.

figure();
subplot(1, 2, 1);
sbeam.basis = 'outgoing';
sbeam.visualise('axis', 'y', ...
   'mask', @(xyz) vecnorm(xyz) < radius, 'range', [1,1]*2e-6)
title('Scattered field');

subplot(1, 2, 2);
tbeam = sbeam.totalField(beam);
tbeam.basis = 'regular';
tbeam.visualise('axis', 'y', ...
   'mask', @(xyz) vecnorm(xyz) < radius, 'range', [1,1]*2e-6)
title('Total field');






[image: Scattered and total field visualisations]

Fig. 4 The total and scattered field visualised for a spherical particle
at the focus of a Gaussian beam.
This slice is along the beam axis, the region corresponding to
the particle has been removed.



The T-matrix in this example only gives the fields outside the particle,
we use the mask parameter to remove the region inside the particle.
To visualise the fields inside the particle we would need to calculate
a internal T-matrix instead.



Calculating optical forces

Now that we have a scattered beam, we are able to calculate the change
in momentum between the incident beam and the particle; and, therefore,
infer the force acting on the particle.
The main function for calculating forces is ott.forcetorque(),
this function can operate on beams or beams and T-matrix.
When both the inputs are beams, the function calculates forces and
torques using various summations over the beam shape coefficients.

[force, torque] = ott.forcetorque(beam, sbeam);





In this example, the force would be 0.0135 and the torque would be
1e-16 which is on the order of round-off error (i.e. numerically
equivalent to zero).
The units depend on the units used for the beam, in this example we
can convert to SI units (Newtons) using

nPc = 0.001 .* index_medium / 3e8;  % 0.001 W * n / vacuum_speed
force_SI = force .* nPc







Beam translations

Being able to calculate optical forces is only useful if we can
translate either the beam or the particle to different locations.
For this, we can use the beam ott.Bsc.translateXyz() function.
The behaviour of this function depends on the current beam basis:
if the beam was generated using one of the ott.Bsc* functions,
the basis should typically be set to regular; if the beam was generated
from scattering by another particle, the basis should be outgoing.
For example, in this example we could translate the beam along the
x-axis with

beam.basis = 'regular';
x = 1.0e-6; y = 0.0e-6; z = 0.0e-6;
offset_beam = beam.translateXyz([x; y; z]);





We could translate the beam and calculate the forces multiple times
with the above method; however, OTT provides a more convinient method
using ott.forcetorque().



Calculate multiple forces with ott.forcetorque

Instead of passing two beam objects to ott.forcetorque(), we could
instead pass a beam and T-matrix object and the various positions
we want to translate the beam to.
As with other translations, it is important to set the basis of the
incident beam before calling the method.
The following code calculates the force along the beam axis (the
z-axis), output is shown in Fig. 5.

xyz = [0;0;1] .* linspace(-4, 4, 100).*1e-6;
fxyz = ott.forcetorque(beam, T, 'position', xyz);

figure();
nPc = n_medium / 3e8;  % n / vacuum_speed
plot(xyz(3, :), fxyz .* nPc);
xlabel('Z position [m]');
ylabel('Force [N/W]');
legend({'Fx', 'Fy', 'Fz'});






[image: Position force curves for spherical particle]

Fig. 5 The force on a spherical particle positioned at different locations
along the beam axis.  The transverse components of the force are
approximately zero.  The axial force displays the well known
profile of an optically traped particle.







            

          

      

      

    

  

    
      
          
            
  
Simulating vaterite with DDA

This section is a companion for the examples/dda_vaterite.m script
and will guide you through simulating an inhomogeneous particle using
the discrete dipole approximation.
The script simulates the vaterite particles described in


Highly birefringent vaterite microspheres: production,
characterization and applications for optical micromanipulation.
S. Parkin, et al., Optics Express Vol. 17, Issue 24, pp. 21944-21955 (2009)
https://doi.org/10.1364/OE.17.021944




These particles are made of a uniaxial birefringent material.
The crystal axis is aligned according to a sheaf-of-wheat structure,
shown in figure Fig. 6.
In order to simulate this particle, we need to specify the
polarizability of each dipole (computational unit cell).


[image: Sheaf-of-wheat structure for vaterite.]

Fig. 6 Illustration of the vaterite sheaf of wheat structure.  The
image shows a slice through the XZ plane.  The particle is rotaionly
symmetry about the Z axis and mirror symmetric about the XY plane.




Describing the vaterite properties

To describe the vaterite shape, we use ott.shapes.Sphere.
DDA requires the shape to be specified using voxels, for this we used
ott.shapes.Sphere.voxels() to calculate voxels on a grid with
a regular spacing.

spacing = wavelength0 / 10;
radius = wavelength0;
shape = ott.shapes.Sphere(radius);
voxels = shape.voxels(spacing, 'even_range', true);





The even_range parameter tells the voxels function to use an even
number of points for the size of each voxel grid dimension.
This means that the voxel grid will not place voxels at the origin
making it easier to use mirror and rotational symmetry options for DDA.

To calculate the polarizability for a unit cell we use the method
based on the lattice dispersion relation from
ott.utils.polarizability.
Vaterite is a uniaxial crystal with an ordinary and extraordinary
refractive index, index_o and index_e respectively.

upol = ott.utils.polarizability.LDR(spacing ./ wavelength0, ...
   [index_o; index_o; index_e] ./ index_medium);





To generate the sheaf of wheat structure we used the sheafOfWheat
function defined in the script to calculate the orientation direction
of each unit cell.

dirs = sheafOfWheat(voxels, 0.5*radius);





Finally, we rotate the polarisability and refractive index so the
z direction aligns with the sheaf-of-wheat direction

index_relative = ott.utils.rotate_3x3tensor(...
    diag([index_o, index_o, index_e] ./ index_medium), 'dir', dirs);
polarizabilities = ott.utils.rotate_3x3tensor(...
    diag(upol), 'dir', dirs);







Calculating the T-matrix with DDA

Once all the properties have been described, we construct the T-matrix
using ott.TmatrixDda.  We use the class constructor rather than
ott.TmatrixDda.simple() in order to specify the polarizability of
each voxel.  If we wanted to simulate a homogeneous sphere we could use
the simple method.

Tmatrix = ott.TmatrixDda(voxels, ...
     'polarizability', polarizabilities, ...
     'index_relative', index_relative, ...
     'index_medium', index_medium, ...
     'spacing', spacing, ...
     'z_rotational_symmetry', 4, ...
     'z_mirror_symmetry', true, ...
     'wavelength0', wavelength0, ...
     'low_memory', low_memory);





Most of the arguments are fairly intuitive: we specify the material properties
and voxel locations with voxels and polarizabilities.
When polarizabilities are specified explicitly, we still need to
specify index_relative in order to ensure correct scaling of the
resulting T-matrix.
The z_rotational_symmetry argument tells the DDA implmenetation to
use fourth order rotational symmetry about the z-axis and the
z_mirror_symmetry says to use mirror symmetry about the XY plane.
The low memory option can be used with rotational symmetry or mirror
symmetry to reduce the amount of memory required at a slight reduction
to computational efficiency.
spacing is currently only used for the Nmax estimation.
If the polarizabilities were not specified, spacing would also
be used for calculating the polarizabilities from index_relative.
wavelength0 and index_medium specify the units for distance,
i.e. the scaling that should be applied to voxels.

Depending on the size of the particle and the number of dipoles,
this could take anywhere from a couple of minutes to several hours to run.
An alternative is to only calculate modes which are present in the
illuminating beam, this can be achieved using the modes option, for
examples, to a beam with only m = 1 modes you could do

Nmax = 5;
m = 1;
n = max(1, abs(m)):Nmax;
modes = [n(:), repmat(m, size(n(:)))];

Tmatrix = ott.TmatrixDda(voxels, ...
   'modes', modes);





The above could also be used to calculate the T-matrix in parallel by
specifying a different mode for each worker to calculate and then
combining the T-matrix columns after calculation.

If you are calculating large T-matrices, you will probably want to
save them to a file so you can use them again later without needing
to rerun DDA.
For this, simply use the save command

save('output.mat', 'Tmatrix')





To load the T-matrix back into Matlab, first make sure OTT is on the
matlab path and then either double click on the .mat file or run

load('output.mat')







Calculating torque on the particle

The calculated T-matrix can be used like any other T-matrix object.
For example, we can create a beam and calculate the torque on the
particle at different locations in the beam:

beam = ott.BscPmGauss('NA', 1.1, 'index_medium', index_medium, ...
   'power', 1.0, 'wavelength0', wavelength0, 'polarisation', [1, -1i]);

[~, tz] = ott.forcetorque(beam, Tmatrix, ...
    'position', [0;0;0], 'rotation', eye(3));









            

          

      

      

    

  

    
      
          
            
  
Combining Beams

The toolbox can calculate the force on a particle from multiple beams
either coherently or incoherently. This page describes the different
beam combination methods used in the multiple_beams.m example. For
both coherent and incoherent beams, the order which beams are combined
and translated can affect accuracy and computation time. This page
assumes the beams can be exactly represented, as is the case for focused
beams which pass through a finite aperture. For plane waves and other
beams requiring an infinite VSWF expansion, it is better to calculate
the beams at the new location.

For this example, we calculate the forces on a spherical partice, the
T-matrix for this particle is given by

% Wavelength in medium/vacuum [m]
wavelength = 1064.0e-9;

T = ott.Tmatrix.simple('sphere', wavelength, 'index_medium', 1.0, ...
    'index_particle', 1.2, 'wavelength0', wavelength);





We combine two copies of the same beam displaced along the x axis:

beam = ott.BscPmGauss('polarisation', [1 1i], 'angle_deg', 50, ...
    'index_medium', 1.0, 'wavelength0', wavelength, 'power', 0.5);

% Displacement of beams [wavelength_medium]
displacement = 0.2*wavelength;





The original beam is centered around the coordinate origin. When we use
these beams we need to translate them to the particle origin. For
example, if the particle is displaced a distance x from the centre
of the two beams, we can translate the beams to this location using by
translating each beam separately:

beam1 = beam.translateXyz([x+displacement; 0; 0]);
beam2 = beam.translateXyz([x-displacement; 0; 0]);






Combining coherent beams

For coherent beams, we need to combine the a and b coefficients
before doing the final force calculation. We can either: * translate
both beams from the coordinate origin to the displaced locations,
combine the beams and then translate the combined beam to the particle
location * translate each beam to the particle location and combine the
beams before calculating the force

Depending on the size of the beams, the separation and the size of the
particle, these methods will take different amounts of time. If the
particle is significantly smaller than the beam Nmax or the separation
between the two beams, it is most likely faster to combine the beams
after translating the individual beams. If many translations/rotations
are needed, it is most likely faster to create a single beam and apply
the translations to that beam.


Creating a single beam

In order to create a single beam, we first need to translate the two
beams from the origin to their displaced locations. In order to be able
to translate a beam multiple times, we need to keep the higher order
multipole terms after the first translation. To calculate the Nmax we
need for this translation, we convert the old Nmax to a radius and add
the displacement before converting back to a Nmax. We then request that
translateXyz produce a beam with the new Nmax.

% Calculate new Nmax
Nmax = ott.utils.ka2nmax(ott.utils.nmax2ka(beam.Nmax) ...
    + displacement*T.k_medium);

% Change the Nmax and create the two beams
beam1 = beam.translateXyz([-displacement; 0; 0], 'Nmax', Nmax);
beam2 = beam.translateXyz([displacement; 0; 0], 'Nmax', Nmax);





To combine the beams, we simply add them (which adds the a and b
coefficients of each beam). We can change the relative phase between the
two beams by simply multiplying a complex phase term by one of the
beams.

% Add the beams
nbeam = beam1 + beam2 * phase;





The force can then be calculated from this combined beam:

% Calculate the force along the x-axis
fx1 = ott.forcetorque(nbeam, T, 'position', [1;0;0] * x);







Combining after translations/rotations

Instead of applying multiple translations to each beam, it is also
possible to apply only a single translation to each beam. There is not
currently any automated method for doing this in the toolbox, the
easiest way is to add the translations and force calculation to a for
loop:

for ii = 1:length(x)

  % Translate and add the beams
  beam1 = beam.translateXyz([x(ii)+displacement; 0; 0]);
  beam2 = beam.translateXyz([x(ii)-displacement; 0; 0]);
  tbeam = beam1 + beam2 * phase;

  % Scatter the beam and calculate the force
  sbeam = T * tbeam;
  fx2(:, ii) = ott.forcetorque(tbeam, sbeam);
end








Combining incoherent beams

For incoherent beams we just need to sum the force from each individual
beam. Similarly to coherent beams, we can apply the translation to the
individual beams or to a combined incoherent beam object.


Operations on individual beams

For incoherent beams, we can use the ott.forcetorque method to do
the translations and force calculation. Unlike coherent beams, we don’t
need to combine the beams after translating the beam.

fx3 = ott.forcetorque(beam, T, ...
    'position', [1;0;0] * x + [displacement; 0; 0]);
fx3 = fx3 + ott.forcetorque(beam * phase, T, ...
    'position', [1;0;0] * x - [displacement; 0; 0]);







Applying the same operations on both beams

As with coherent beams, combining both beams requires translating the
beam and keeping the higher Nmax terms. We can then combine the beams
into a single ott.Bsc object and use the ott.forcetorque method
to apply the translations and calculate the forces. When
ott.forcetorque is called with a ott.Bsc object containing
multiple beams, it produces a 3-Dimensional matrix with the third
dimension corresponding to the force from each beam in ott.Bsc. To
calculate the incoherent force, we simply need to sum over the third
dimension of this matrix.

% Calculate new Nmax
Nmax = ott.utils.ka2nmax(ott.utils.nmax2ka(beam.Nmax) ...
    + displacement*T.k_medium);

% Change the Nmax and create the two beams
beam1 = beam.translateXyz([-displacement; 0; 0], 'Nmax', Nmax);
beam2 = beam.translateXyz([displacement; 0; 0], 'Nmax', Nmax);

beamc = beam1.append(beam2);

fx4 = ott.forcetorque(beamc, T, 'position', [1;0;0] * x);
fx4 = sum(fx4, 3);










            

          

      

      

    

  

    
      
          
            
  
Creating a custom beam

There are multiple ways to create your own beam in the toolbox. If your
beam can be described as a mixture of other beams already in the
toolbox, you can create the beam by simply adding these beams, see the
combining beams page. If you already have the beam
shape coefficients, the easiest way is to create a new instance of
ott.Bsc. If you don’t know the coefficients but you know the near-
or far-field representation of the beam then you can use the static
functions in ott.BscPointmatch.

A more complicated way to create your own beam is to create your own
class which inherits either from ott.Bsc or ott.BscPointmatch.
This offers greater flexibility and allows you to easily add additional
checks on user input.


Using ott.Bsc directly

The ott.Bsc class can be instantiated with arrays of the beam shape
coefficients, this can be useful if you want to create a beam with
particular multipole components or if you are using another method to
calculate the beam shape coefficients. For example, to create a incoming
beam with only quadrapole coefficients:

a = [0, 0, 0, 0, 1, 0, 0, 0];  % [3 dipole, 5 quadrapole]
b = 1i * a;
basis = 'incoming';
type = 'incident';
beam = ott.Bsc(a, b, basis, type);





The ott.Bsc object can then be used with Tmatrix objects or for
visualisation of the beam:

figure();
beam.visualiseFarfieldSphere('type', '3dpolar', 'field', 'E2')






[image: dipole beam visualization]

Fig. 7 dipole beam visualization





Creating a beam with point matching

If you don’t know the VSWF expansion of your beam but you are able to
calculate or measure the phase and amplitude in the near-field or
far-field, you can use ott.BscPointmatch or ott.BscPmParaxial.
ott.BscPointmatch contains two static methods for calculating the
beam shape coefficients from the near-fields or far-fields.
ott.BscPmParaxial uses the far-field method from
ott.BscPointmatch and provides the code to calculate the far-field
coordinates for a 2-D image of the fields at the back focal plane of the
objective.


ott.BscPmParaxial in far-field

This class can be used to create beam shape coefficients from images at
the back-aperture of the microscope objective. For this example, we will
use the following images for the phase and amplitude:

[image: phase pattern] [image: amplitude pattern]

These images may work better if spatial filtering is applied to remove
higher frequency components from the images, this can be achieved using
imgaussfilt. In this example, we are going to generate a circularly
polarised beam. To do this, we first load our images and assemble them
into a complex E field matrix:

% read, scale and convert to double (might need rgb2gray depending on file)
imPhase = double(imread('phase.png')) ./ 255.0;
imAmplitude = double(imread('amplitude.png')) ./ 255.0;

E = imAmplitude;    % x polarisation
E(:, :, 2) = 1i * imAmplitude;  % y polarisation
E = E .* exp(1i * 2 * pi * imPhase);





For a vector beam, we could instead use separate images for the x and y
polarisation of each pixel. To use the BscPmParaxial class, we need
to provide the complex far-field matrix, the numerical aperture of the
beam, properties of the beam (such as wavelength and frequency), and a
mapping function describing how the image coordinates are mapped to the
spherical coordinates for the far-field of the beam.

The E-field matrix describes the field at the back aperture of the
objective. The matrix is mapped onto a hemisphere, with a maximum angle
defined by the numerical aperture of the objective. The centre of the
hemisphere corresponds to the centre of the images. The radial
coordinate extends from the centre of the image to the edge of the image
(the corners of the image do not contribute to the beam).
BscPmParaxial supports the following mapping functions



	'sintheta' (default) image radius proportional to sin(theta)


	'tantheta' image radius proportional to tan(theta)


	'theta' image radius proportional to theta where theta is
the polar coordinate on the hemisphere.







index_medium = 1.0;
wavelength0= 1064e-9;
omega = 3e8 / wavelength0 * 2 * pi;
NA = -1.0;   % sign of NA determines beam direction
Nmax = 30;   % higher spatial frequencies require higher NA
beam = ott.BscPmParaxial(NA, E, ...
    'index_medium', index_medium, ...
    'Nmax', Nmax, ...
    'wavelength0', wavelength0, ...
    'omega', omega);
beam.basis = 'regular';
figure();
beam.visualise('axis', 'y');






[image: output beam]

Fig. 8 output beam



This method can be slow since the coefficient matrix for point matching
is calculated each time. To speed up the method for multiple beam
calculation, BscPmParaxial supports keeping the coefficient matrix.

beam1 = ott.BscPmParaxial(..., 'keep_coefficient_matrix', true);
beam2 = ott.BscPmParaxial(..., 'beamData', beam1);







Far-field

ott.BscPointmatch/bsc_farfield can be used to calculate the beam
shape coefficients from the mode indices, coordinates and E-field. The
resulting BSC can be wrapped in an ott.Bsc object (see above).

% Calculate mode indices
mode_indexes=[1:Nmax*(Nmax+2)].';
[nn,mm]=ott.utils.combined_index(mode_indexes);

% Calculate e_field in theta/phi coordinates
[theta,phi]=ott.utils.angulargrid(2*(Nmax+1),2*(Nmax+1));
e_field = ...;

[a, b] = ott.BscPointmatch.bsc_farfield(nn, mm, e_field(:), theta(:), phi(:));







Near-field

ott.BscPointmatch/bsc_focalplane calculates the beam shape
coefficients in a Cartesian coordinate system centred around the focal
plane. To use the method, you must specify the mode indices, field
locations and field vectors in Cartesian coordinates.

% Calculate mode indices
mode_indexes=[1:Nmax*(Nmax+2)].';
[nn,mm]=ott.utils.combined_index(mode_indexes);

% Calculate e_field
[xx, yy, zz] = meshgrid(linspace(-1, 1), linspace(-1, 1), linspace(-1, 1));
[r, theta, phi] = ott.utils.xyz2rtp(xx(:), yy(:), zz(:));
kr = r .* 2 * pi / lambda;
e_field = [Ex(:); Ey(:); Ez(:)];

[a, b] = ott.BscPointmatch.bsc_focalplane(nn, mm, e_field, kr, theta, phi);







Custom ott.BscPointmatch class

Although the bsc_focalplane and bsc_pointmatch functions can be
used directly, their use is rather cumbersome for regular use. In order
to offer a simplified interface for these objects you can inherit from
ott.BscPointmatch. This allows you to define all the methods needed
to create the beam within the class, directly set the beam shape
coefficients and provide a user interface which provides only physically
motivated parameters.

In this section we will go through an example of creating a
point-matching method for annular beams. For other examples, look at the
ott.BscPm* class implementations.

All beam classes should inherit from ott.Bsc. Point-matching beams
should implement from ott.BscPointmatch which inherits from
ott.Bsc. For our annular class we inherit from
ott.BscPointmatch. The outline for our class is shown bellow:

classdef BscPmAnnular < ott.BscPointmatch
  % Documentation...

  properties (SetAccess=protected)
    % Beam properties...
  end

  methods (Static)
    % Methods which can't access properties...
  end

  methods
    % Methods which can access properties
  end
end





We declare the properties as SetAccess=protected, this means that
the properties can only be set by functions defined in the class method
blocks. For annular beams, we define one property, the numerical
aperture describing the inner and outer radius of the annular.

properties (SetAccess=protected)
  NA     % Numerical aperture [r1, r2]
end





To calculate the beam profile, we will implement a static method which
takes as input the two NA and outputs zeros or ones for the amplitude of
the beam:

methods (Static)
  function im = generatePattern(r1, r2)

    [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
    rr = sqrt(xx.^2 + yy.^2);

    im = double(rr > r1 & rr < r2);
  end
end





The main method the user will use to interact with the beam is the
constructor. The constructor will include the numerical aperture and
optional named arguments. We use an inputParser to handle the named
arguments. For the beam wavenumber, we can use the
ott.Bsc/parser_k_medium function.

methods
  function beam = BscPmAnnular(NA, varargin)

    % Call base class constructor
    beam = beam@ott.BscPointmatch();

    p = inputParser();
    p.addParameter('Nmax', 30);

    % Parameters for frequency and wavenumber
    p.addParameter('omega', 2*pi);
    p.addParameter('wavelength0', 1);
    p.addParameter('k_medium', []);
    p.addParameter('index_medium', []);
    p.addParameter('wavelength_medium', []);
    p.parse(varargin{:});

    % Store/get parameters
    Nmax = p.Results.Nmax;
    beam.k_medium = ott.Bsc.parser_k_medium(p, 2*pi);
    beam.omega = p.Results.omega;
    beam.NA = NA;

    if isempty(p.Results.index_medium)
      nMedium = 1.0;
    else
      nMedium = p.Results.index_medium;
    end

    % Calculate the radius from NA
    NAonm = NA/nMedium;

    % Calculate the pattern
    im = beam.generatePattern(NAonm(1), NAonm(2));

    % Calculate the coordinates in the far-field
    [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
    rr = sqrt(xx.^2 + yy.^2);
    phi = atan2(yy, xx);
    theta = asin(rr);

    % Remove points outside NA=1
    phi = phi(rr < 1);
    theta = theta(rr < 1);
    im = im(rr < 1);

    % Transform im into e_field
    Et = sign(cos(theta)).*cos(phi).*im;
    Ep = -sin(phi).*im;
    e_field=[Et(:); Ep(:)];

    % Calculate mode indices
    mode_indexes=[1:Nmax*(Nmax+2)].';
    [nn,mm]=ott.utils.combined_index(mode_indexes);

    % Calculate BSC
    [beam.a, beam.b] = ott.BscPointmatch.bsc_farfield(nn, mm, e_field(:), theta(:), phi(:));

    % Set other BSC properties
    beam.type = 'incident';
    beam.basis = 'regular';
  end
end





This class doesn’t implement exactly the same functionality as the
ott.BscPmAnnular class, but it shows how a class could be
implemented to wrap the bsc_farfield method.


Full class definition




classdef BscPmAnnular < ott.BscPointmatch
  % Documentation...

  properties (SetAccess=protected)
    NA     % Numerical aperture [r1, r2]
  end

  methods (Static)
    function im = generatePattern(r1, r2)

      [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
      rr = sqrt(xx.^2 + yy.^2);

      im = double(rr > r1 & rr < r2);
    end
  end

  methods
    function beam = BscPmAnnular(NA, varargin)

      % Call base class constructor
      beam = beam@ott.BscPointmatch();

      p = inputParser();
      p.addParameter('Nmax', 20);

      % Parameters for frequency and wavenumber
      p.addParameter('omega', 2*pi);
      p.addParameter('wavelength0', 1);
      p.addParameter('k_medium', []);
      p.addParameter('index_medium', []);
      p.addParameter('wavelength_medium', []);
      p.parse(varargin{:});

      % Store/get parameters
      Nmax = p.Results.Nmax;
      beam.k_medium = ott.Bsc.parser_k_medium(p, 2*pi);
      beam.omega = p.Results.omega;
      beam.NA = NA;

      if isempty(p.Results.index_medium)
        nMedium = 1.0;
      else
        nMedium = p.Results.index_medium;
      end

      % Calculate the radius from NA
      NAonm = NA/nMedium;

      % Calculate the pattern
      im = beam.generatePattern(NAonm(1), NAonm(2));

      % Calculate the coordinates in the far-field
      [xx, yy] = meshgrid(linspace(-1, 1), linspace(-1, 1));
      rr = sqrt(xx.^2 + yy.^2);
      phi = atan2(yy, xx);
      theta = asin(rr);

      % Remove points outside NA=1
      phi = phi(rr < 1);
      theta = theta(rr < 1);
      im = im(rr < 1);

      % Transform im into e_field
      Et = sign(cos(theta)).*cos(phi).*im;
      Ep = -sin(phi).*im;
      e_field=[Et(:); Ep(:)];

      % Calculate mode indices
      mode_indexes=[1:Nmax*(Nmax+2)].';
      [nn,mm]=ott.utils.combined_index(mode_indexes);

      % Calculate BSC
      [beam.a, beam.b] = ott.BscPointmatch.bsc_farfield(nn, mm, e_field(:), theta(:), phi(:));

      % Set other BSC properties
      beam.type = 'incident';
      beam.basis = 'regular';
    end
  end
end








Creating a custom Bsc class

For other beam shape coefficient definitions, it is possible to create a
custom class which inherits from ott.Bsc. The implemention for this
class will be very similar to the BscPmAnnular class shown above.
For examples, see ott.BscBessel and ott.BscPlane.

classdef BscCustomClass < ott.Bsc
  % Documentation...

  properties (SetAccess=protected)
    % Beam properties...
  end

  methods (Static)
    % Methods which can't access properties...
  end

  methods
    % Methods which can access properties

    function beam = BscCustomClass()

      % Call the base class constructor
      beam = beam@ott.Bsc();

      % Implementation...
    end
  end
end









            

          

      

      

    

  

    
      
          
            
  
Creating a custom T-matrix


Contents


	Creating a custom T-matrix






Information on creating a custom T-matrix code.




            

          

      

      

    

  

    
      
          
            
  
Calculating forces with the GUI

In this example we calculate the forces on a spherical particle for
different axial and radial displacements in a Gaussian beam.
We use the GUI for calculating the forces, generating the beam shape
coefficients for the beam and calculating the T-matrix for the particle.
This example produces similar output to the spherical particle example
script (examples/example_sphere.m) without needing to write a
single line of Matlab code.

Before starting this example, ensure you have OTT installed and are
able to launch the Launcher GUI, see Getting Started for details.

In this example, we generate the beam shape coefficients for a Gaussian
beam, calculate the T-matrix for a spherical particle and


Contents


	Generating a Gaussian beam


	Generating the T-matrix


	Calculating forces







Generating a Gaussian beam

To generate a LG beam, we will use LG beam application, which
uses ott.BscPmGauss to generate Gaussian and LG beams.
Open the Launcher and select BSC > LG beam > Launch to
open the LG beam application.
The window shown in Fig. 9 should display.


[image: Default Generate LG beam GUI.]

Fig. 9 The Generate LG Beam GUI with all the default parameters.



For a Gaussian beam, we want to set the radial and azimuthal modes to 0
(the default).  For this example we will use a circularly polarised beam,
so we set the polarisation to [1, 1i] (the default).
For the vacuum wavelength we will enter 1064.0e-9, corresponding to
1064nm, and we will use the refractive index of water for the medium
(enter 1.33 into the Index (medium) field).
Finally, for the NA we will use 1.02.

For most Gaussian and LG beam we do not need to explicitly set
\(N_{max}\).
A general rule of thumb is Nmax should be large enough to surround the
beam focus, so most of the beam power goes through a circle of radius
\(N_{max}k_{medium}\) where \(k_{medium}\) is the wavenumber
in the medium.

Once all the parameters have been set, click Generate.
Depending on you computer this may take a couple of seconds or a few
minutes.
The resulting output is shown in figure Fig. 10.
Additionally, a variable should be created in the Matlab workspace
for our new beam (we will use this variable later).


[image: Generate beam GUI after clicking generate.]

Fig. 10 The Generate LG Beam GUI after clicking the Generate button should
now display the beam transverse and axial field distributions.





Generating the T-matrix

To generate the T-matrix representing the scattering by a spherical
particle we can use the Geometric shape GUI.
This GUI attempts to use the appropriate T-matrix method for the
given geometric shape.
To launch the GUI, open the launcher and select
T-matrix > Geometric shape > Launch.

For this example, we want to simulate a spherical polystyrene
particle with refractive index 1.59.
For the relative refractive index field we enter 1.59/1.33, this
expression is evaluated in the Matlab workspace and should produce
about 1.2.
It is also possible to enter a variable name, for instance, if we had
a variable called index_medium we could have written
1.59/index_medium.
For the wavelength we enter 1064.0e-9/1.33.
Make sure the sphere option is selected and set the radius to
500 nm (i.e., 5e-7).
For a spherical particle, we leave the Nmax and Method options
with their default values.

Finally click Generate.
The progress bar should change and a T-matrix object should be added to
the Matlab workspace.
For spherical particles this shouldn’t take very long, however for other
shapes this could take hours depending on the shape and chosen method.
The progress bar is approximate and not supported by all methods.
Figure Fig. 11 shows the GUI after clicking generate.


[image: Geometric Shape T-matrix GUI after clicking generate.]

Fig. 11 The Generate Shape T-matrix GUI after clicking generate looks almost
the same as before clicking generate.  The shape preview is provided
when the shape proeprties are set.





Calculating forces

The final part of this example is calculating the force for different
axial and radial displacements.
To do this, we need Beam and Tmatrix variables in Matlabs workspace,
these can be generated by following the above instructions or by directly
calling the appropriate functions/classes.
To translate the beam and calculate the forces we use the
Calculate Force/Torque Profiles GUI.
From the Launcher select Tools > Force Profile > Launch.

The GUI has two drop down boxes for selecting the Beam and T-matrix
variables.
These fields are only updated when you launch the GUI: If you created
your T-matrix or Beam after launching this GUI, you can type in the
beam and T-matrix names manually.
For this example, we select the Beam and Tmatrix variables
created in the previous steps.

Optionally, we can specify an output variables.
This variable name is used to save the generated force/torque data in
the Matlab workspace, useful if you would like to save the data or generate
your own plots with the raw data.

The remaining options are for specifying the location and translation/rotation.
The units for the range values depend on the type of direction, for
translations the units are beam wavelengths.
For rotations, the units are radians.

Once you have specified your desired range, click generate to calculate the
forces and generate a graph.
Example output is shown in figure Fig. 12 for
translation along the axial direction.

The units for the force and torque depend on the units chosen for the
beam power.
In this example, the beam power was left at its default value (1.0)
and the units for the force are the dimensionless trapping efficiency,
which can be converted to Newtons by multiplying with \(nP/c\)
where \(n\) is the refractive index of the medium,
\(P\) is the power and \(c\) is the speed of light in vacuum.


[image: Calculate Force/Torque Profile GUI after clicking generate.]

Fig. 12 The force profile for a spherical particle in a Gaussian beam when
translated along the beam axis.
There is no torque on this particle and the displayed torque is
noise from the numerical calculation.
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Bsc classes

This section contains information about the beam shape coefficient classes
(Bsc) currently implemented in the toolbox.
These classes can be used to describe optical tweezers beams in a
basis of vector spherical wave functions.
The classes provide functions for translating beams, visualising
beams and overloads for adding beams.
Most of the core functionality is provided in the base class
ott.Bsc.
Classes inheriting from this class typically only need to define
the beam creation code specific to that type of beam.


Contents


	Bsc


	BscPlane


	BscPmGauss


	BscPmParaxial


	BscPointmatch







Bsc

ott.Bsc is the base class for objects representing
beam shape coefficients (BSC) including
BscPmGauss and BscPmParaxial.
The class can also be used directly to package a set of existing
BSC for use with other functions in the toolbox, for example

a = [1; 0; 0]; b = 1i.*a;
basis = 'incoming';
type = 'incident';
beam = ott.Bsc(a, b, basis, type);





would create a new beam with Nmax = 1 (i.e. 3 coefficients for a and b)
with the incoming vector spherical wave function basis,
representing a incident beam.
For further information about creating custom beams, see
the Creating a custom beam example.


	
class ott.Bsc(a, b, basis, type, varargin)

	Bsc abstract class representing beam shape coefficients

Most quantities have SI dimensions.  Any SI units can be used for
these quantities (for example m or microns) as long as the units
are consistent.

Beam power (i.e., the Bsc.power property) can be converted to SI
units by multiplying by 1/(2*Z*k^2) where Z is the medium impedance
and k is the medium wave number (this does not affect force calculation).
Changing the beam power is not recommended in this
or earlier versions of the toolbox since this effects both
accuracy and run-time.  This behaviour will be changed (fixed) in
a future release.


	Properties
	
	a           –  Beam shape coefficients a vector


	b           –  Beam shape coefficients b vector


	type        –  Beam type (incident, scattered, total)


	basis       –  VSWF beam basis (incoming, outgoing or regular)


	Nmax        –  Truncation number for VSWF coefficients


	power       –  Power of the beam [M*L^2/S^3]


	Nbeams      –  Number of beams in this Bsc object


	wavelength  –  Wavelength of beam [L]


	speed       –  Speed of beam in medium [L/T]


	omega       –  Angular frequency of beam [2*pi/T]


	k_medium    –  Wavenumber in medium [2*pi/L]


	dz          –  Absolute cumulative distance the beam has moved






	Methods
	
	append      –  Joins two beam objects together


	sum         –  Merge the BSCs for the beams contained in this object


	translateZ  –  Translates the beam along the z axis


	translateXyz – Translation to xyz using rotations and z translations


	translateRtp – Translation to rtp using rotations and z translations


	farfield     – Calculate fields in farfield


	emFieldXyz   – Calculate field values in cartesian coordinates


	emFieldRtp   – Calculate field values in spherical coordinates


	getCoefficients – Get the beam coefficients [a, b]


	getModeIndices – Get the mode indices [n, m]


	totalField   – Calculate the total field reprsentation of the beam


	scatteredField – Calcualte the scattered field representation of the beam


	visualise      – Generate a visualisation of the beam near-field


	visualiseFarfield – Generate a visualisation of the beam far-field


	visualiseFarfieldSlice  – Generate scattering slice at specific angle


	visualiseFarfieldSphere – Generate spherical surface visualisation


	intensityMoment – Calculate moment of beam intensity in the far-field






	Static methods:
	
	make_beam_vector – Convert output of bsc_* functions to beam coefficients








See also Bsc, ott.BscPmGauss, ott.BscPlane.


	
Bsc(a, b, basis, type, varargin)

	BSC construct a new beam object

beam = Bsc(a, b, basis, type, …) constructs a new beam vector.
Useful if you have a specific set of a/b coefficients that you
want to wrap in a beam object.

Basis: incoming, outgoing or regular
Type: incident, scattered, total, internal


	Optional named arguments:
	k_medium  n  Wavenumber in medium (default: 2*pi)
omega     n  Angular frequency (default: 2*pi)
dz        n  Initial displacement of the beam (default: 0)
like    beam Construct this beam to be like another beam










	
static GetVisualisationData(field_type, xyz, rtp, vxyz, vrtp)

	Helper to generate the visualisation data output.
This function is not intended to be called directly, instead
see visualise() or visualiseFarfield().


	Usage
	GetVisualisationData(field_type, xyz, rtp, vxyz, vrtp)
Takes a field_type string, the coordinates (either xyz or rtp),
and the data values (either vxyz or vrtp).



	Parameters
	
	xyz, rtp, vxyz, vrtp – (Nx3 numeric) Coordinates in a
suitable form to be passed to ott.utils.xyz2rtp and similar
functions.  Pass empty arrays for unused values.


	field_type – (enum) Type of field to calculate.
Supported types include:



	‘irradiance’  – \(\sqrt{|Ex|^2 + |Ey|^2 + |Ez|^2}\)


	‘E2’ – \(|Ex|^2 + |Ey|^2 + |Ez|^2\)


	‘Sum(Abs(E))’ – \(|Ex| + |Ey| + |Ez|\)


	Re(Er), Re(Et), Re(Ep), Re(Ex), Re(Ey), Re(Ez)


	Abs(Er), Abs(Et), Abs(Ep), Abs(Ex), Abs(Ey), Abs(Ez)


	Arg(Er), Arg(Et), Arg(Ep), Arg(Ex), Arg(Ey), Arg(Ez)




















	
translateXyz(beam, varargin)

	Translate the beam given Cartesian coordinates.

Units for the coordinates should be consistent with the
beam wave number (i.e., if the beam was created by specifying
wavelength in units of meters, distances here should also be
in units of meters).


	Usage
	tbeam = beam.translateXyz(xyz) translate the beam to locations
given by the xyz coordinates, where xyz is a 3xN matrix
of coordinates.

tbeam = beam.translateXyz(Az, Bz, D)
Translate the beam using z-translation and rotation matrices.

[tbeam, Az, Bz, D] = beam.translateXyz(…) returns the
z-translation matrices Az, Bz, the rotation matrix D,
and the translated beam tbeam.

[tbeam, A, B] = beam.translateXyz(…) returns the translation
matrices A, B and the translated beam.

[tbeam, AB] = beam.translateXyz(…) returns the translation
matrices A, B packaged so they can be directly applied
to a beam using tbeam = AB * beam.

tbeam = beam.translateXyz(…, ‘Nmax’, Nmax) specifies the
output beam Nmax.  Takes advantage of not needing to
calculate a full translation matrix.










	
translateZ(beam, varargin)

	Translate a beam along the z-axis.

Units for the coordinates should be consistent with the
beam wave number (i.e., if the beam was created by specifying
wavelength in units of meters, distances here should also be
in units of meters).


	Usage
	tbeam = beam.translateZ(z) translates by a distance z
along the z axis.

[tbeam, A, B] = beam.translateZ(z) returns the translation matrices
and the translated beam.  See also ott.Bsc.translate().

[tbeam, AB] = beam.translateZ(z) returns the A, B matrices
packed so they can be directly applied to a
beam: tbeam = AB * beam.

[…] = beam.translateZ(…, ‘Nmax’, Nmax) specifies the output
beam Nmax.  Takes advantage of not needing to calculate
a full translation matrix.










	
visualise(beam, varargin)

	Create a visualisation of the beam


	Usage
	visualise(…) displays an image of the beam in the current
figure window.

im = visualise(…) returns a image of the beam.
If the beam object contains multiple beams, returns images
for each beam.



	Optional named arguments
	
	‘size’    [ x, y ]    Width and height of image


	‘field’   type        Type of field to calculate


	‘axis’    ax          Axis to visualise (‘x’, ‘y’, ‘z’) or
a cell array with 2 or 3 unit vectors for x, y, [z].


	‘offset’  offset      Plane offset along axis (default: 0.0)


	‘range’   [ x, y ]    Range of points to visualise.
Can either be a cell array { x, y }, two scalars for
range [-x, x], [-y, y] or 4 scalars [ x0, x1, y0, y1 ].


	‘mask’    func(xyz)   Mask function for regions to keep in vis


	‘combine’ (enum)      If multiple beams should be treated as
‘coherent’ or ‘incoherent’ beams and their outputs added.
incoherent may only makes sense if the field is an intensity.
Default: [].













	
visualiseFarfield(beam, varargin)

	Create a 2-D visualisation of the farfield of the beam

visualiseFarfield(…) displays an image of the farfield in
the current figure window.

im = visualiseFarfield(…) returns a 2-D image of the farfield.

[im, data] = visualiseFarfield(…, ‘saveData’, true) returns the
saved data that can be used for repeated calculation.



	TODO: Should the data object instead be a callable object?
	This would make the interface simpler.









	Optional named arguments:
	
‘size’    [ x, y ]    Size of the image
‘direction’  dir      Hemisphere string (‘pos’ or ‘neg’),


2-vector (theta, phi) or 3x3 rotation matrix.




‘field’   type        Type of field to calculate
‘mapping’ map         Mapping from sphere to plane (‘sin’, ‘tan’)
‘range’   [ x, y ]    Range of points to visualise




‘saveData’ bool  save data for repeated calculation (default: false)
‘data’    data   data saved for repeated calculation.
‘thetaMax’ num   maximum theta angle to include in image
‘showVisualisation’  bool   show the visualisation in the


current figure (default: nargout == 0).













	
visualiseFarfieldSlice(beam, phi, varargin)

	Generate a 2-D scattering plot of the far-field.


	Usage:
	beam.visualiseFarfieldSlice(phi, …)
Generates a slice/polar plot of the far-field.  In this version
the slice is always aligned to the z-axis.  phi specifies the
rotation of the plane about the z-axis.

[theta, I] = beam.visualiseFarfieldSlice(phi, …)
calculate data for the visualisation but don’t generate a
visualisation unless showVisualisation is true.



	Optional named arguments:
	
	field (enum) – The field type to visualise.  Defaults to
‘irradiance’.  Not all field types support visualisation.


	normalise (logical) – If true, the calculated fields are
normalised by the maximum calculated field value.


	ntheta (numeric) – Number of angular points to use.
Defaults to 100.


	showVisualisation (logical) – If the visualisation should
be shown.  Defaults to nargout == 0.













	
visualiseFarfieldSphere(beam, varargin)

	Generate a spherical surface visualisation of the far-field

beam.visualiseFarfieldSphere(phi)


	Optional named arguments:
	npts      num   Number of points to use for sphere surface
normalise bool  If intensity values should be normalised to 1
type      str   Type of visualisation to produce.


sphere    (default) draw a sphere with intensity as color
3dpolar   scale the radius by the intensity


















BscPlane

Representation of a plane wave in VSWF coefficients


	
class ott.BscPlane(theta, phi, varargin)

	BscPlane representation of a plane wave in VSWF coefficients


	BscPlane properties:
	theta           Beam direction (polar angle)
phi             Beam direction (azimuthal angle)
polarisation    Beam polarisation [ Etheta Ephi ]



	BscPlane methods:
	translateZ      Translates the beam and checks within beam range





Based on bsc_plane.m from ottv1.

See also BscPlane and ott.Bsc.

This file is part of the optical tweezers toolbox.
See LICENSE.md for information about using/distributing this file.







BscPmGauss

Provides HG, LG and IG beams using point matching method


	
class ott.BscPmGauss(varargin)

	BscPmGauss provides HG, LG and IG beams using point matching method


	Properties
	
	gtype          –  Type of beam (‘gaussian’, ‘lg’, ‘hg’, or ‘ig’)


	mode           –  Beam modes (2 or 4 element vector)


	polarisation   –  Beam polarisation


	truncation_angle – Truncation angle for beam [rad]


	offset         –  Offset for original beam calculation


	angle          –  Angle of incoming beam waist


	angular_scaling – Angular scaling function (tantheta | sintheta)




See ott.Bsc for inherited properties.





This class is based on bsc_pointmatch_farfield.m and
bsc_pointmatch_focalplane.m from OTT (version 1).

See also BscPmGauss.


	
BscPmGauss(varargin)

	Construct a new IG, HG, LG or Gaussian beam.


	Usage
	BscPmGauss(…) constructs a new Gassian beam (LG00).

BscPmGauss(type, mode, …) constructs a new beam with the given type.
Supported types [mode]:



	‘lg’ – Laguarre-Gauss  [ radial azimuthal ]


	‘hg’ – Hermite-Gauss   [ m n ]


	‘ig’ – Ince-Gauss      [ paraxial azimuthal parity elipticity ]









	Optional named parameters
	
	‘Nmax’  –          Truncation number for beam shape coefficients.
If omitted, Nmax is initially set to 100, the beam is
calculated and Nmax is reduced so that the power does
not drop significantly.


	‘zero_rejection_level’ – Level used to determine non-zero
beam coefficients in far-field point matching.  Default: 1e-8.


	‘NA’     –         Numerical aperture of objective


	‘polarisation’  –  Polarisation of the beam


	‘power’         –  Rescale the power of the beam (default: [])


	‘omega’         –  Optical angular frequency (default: 2*pi)


	‘k_medium’      –  Wave number in medium


	‘index_medium’  –  Refractive index of medium


	‘wavelength_medium’ – Wavelength in medium


	‘wavelength0’   –  Wavelength in vacuum


	‘offset’        –  Offset of the beam from origin


	translation_method – Method to use when calculating translations.
Can either be ‘Default’ or ‘NewBeamOffset’, the latter calculates
new beam shape coefficients for every new position.


	angular_scaling (enum) – Angular scaling function.
For a discussion of this parameter, see Documentation
(Point-matching and angle projections).



	‘sintheta’ – angular scaling function is the same as the
one present in standard microscope objectives.
Preserves high order mode shape!


	‘tantheta’ – default angular scaling function,
“small angle approximation” which is valid for thin
lenses ONLY. Does not preserve high order mode shape
at large angles.









	truncation_angle (numeric) – Adds a hard edge to the
beam, this can be useful for simulating the back-aperture
of a microscope objective.  Default: pi/2 (i.e. no edge).


	truncation_angle_deg – Same as truncation_angle but
with degrees instead of radians.


















BscPmParaxial

Calculate representation from farfield/paraxial beam


	
class ott.BscPmParaxial(NA, E_ff, varargin)

	BscPmParaxial calculate representation from farfield/paraxial beam


	Properties:
	a               (Bsc) Beam shape coefficients a vector
b               (Bsc) Beam shape coefficients b vector
type            (Bsc) Beam type (incoming, outgoing or scattered)



	Methods:
	translateZ      (Bsc) Translates the beam along the z axis
translateXyz    (Bsc) Translation to xyz using rotations and z translations
translateRtp    (Bsc) Translation to rtp using rotations and z translations
farfield        (Bsc) Calculate fields in farfield
emFieldXyz      (Bsc) Calculate fields at specified locations
set.Nmax        (Bsc) Resize the beam shape coefficient vectors
get.Nmax        (Bsc) Get the current size of the beam shape vectors
getCoefficients (Bsc) Get the beam coefficients [a, b]
getModeIndices  (Bsc) Get the mode indices [n, m]
power           (Bsc) Calculate the power of the beam





Based on paraxial_to_bsc from ottv1.

See also BscPmParaxial, ott.Bsc and examples/slm_to_focalplane

This file is part of the optical tweezers toolbox.
See LICENSE.md for information about using/distributing this file.







BscPointmatch

Base class for BSC generated using point matching


	
ott.BscPointMatch

	







            

          

      

      

    

  

    
      
          
            
  
Tmatrix classes

This section describes the Tmatrix classes currently
implemented in the toolbox.



	Tmatrix


	TmatrixEbcm


	TmatrixMie


	TmatrixPm


	TmatrixSmarties


	TmatrixDda







Tmatrix


	
class ott.Tmatrix(data, type)

	Class representing the T-matrix of a scattering particle or lens.
This class can either be instantiated directly or used as a base
class for defining custom T-matrix types.

This class is the base class for all other T-matrix object, you
should inherit from this class when defining your own T-matrix
creation methods. This class doesn’t inherit from double or single,
instead the internal array type can be set at creation allowing the
use of different data types such as sparse or gpuArray.

This class is not a handle class, therefore, when using the class
methods you need to store the resulting T-matrix output, for example:

tmatrix = ott.Tmatrix();
new_tmatrix = tmatrix.scattered();






	Properties
	
	data        – The T-matrix this class encapsulates


	type (enum) – Type of T-matrix (total or scattered)






	Methods
	
	total()     – Convert to a total-field T-matrix


	scattered() – Convert to a scattered-field T-matrix


	real        – Extract real part of T-matrix


	imag        – Extract imaginary part of T-matrix






	Static methods
	
	simple()    – Construct a simple particle T-matrix








See also Tmatrix, simple, ott.TmatrixMie.


	
Tmatrix(data, type)

	Construct a new T-matrix object.


	Usage
	TMATRIX() leaves the data uninitialised.

TMATRIX(data, type) initializes the data with the matrix data.



	Parameters
	
	data (numeric) – The T-matrix data.  Typically a sparse or
full matrix.


	type (enum) – Type of T-matrix.  Must be ‘internal’,
‘scattered’ or ‘total’.






	Example
	The following example creates an identity T-matrix which
represents a particle which doesn’t scatter light:

data = eye(16);
tmatrix = ott.Tmatrix(data, 'total');














	
static simple(shape, varargin)

	Constructs a T-matrix for different simple particle shapes.
This method creates an instance of one of the other T-matrix
classes and is here only as a helper method.


	Usage
	SIMPLE(shape) constructs a new simple T-matrix for the given
ott.shapes.Shape object.

SIMPLE(name, parameters) constructs a new T-matrix for the
shape described by the name and parameters.



	Supported shape names [parameters]
	
	‘sphere’       – Spherical (or layered sphere) [ radius ]


	‘cylinder’     – z-axis aligned cylinder [ radius height ]


	‘ellipsoid’    – Ellipsoid [ a b c]


	‘superellipsoid’ – Superellipsoid [ a b c e n ]


	‘cone-tipped-cylinder’  –  [ radius height cone_height ]


	‘cube’         – Cube [ width ]


	‘axisym’       – Axis-symetric particle [ rho(:) z(:) ]






	Optional named arguments
	
	method (enum) – Allows you to choose the preferred method
to use for T-matrix calculation.  Supported methods are
‘mie’, smarties’, ‘dda’, ‘ebcm’, and ‘pm’.
Default: ‘’.


	method_tol (numeric) – Specifies the error tolerances,
a number between (0, 1] to use for method selection.
Smaller values correspond to more accurate methods.
Default: [].






	Example
	The following example creates a T-matrix for a cube with side
length of 1 micron using a guess at the best available method.
Illumination wavelength is 1064 nm, relative index 1.5/1.33:

tmatrix = ott.Tmatrix.simple('cube', 1.0e-6, ...
  'wavelength0', 1064e-9, ...
  'index_medium', 1.33, 'index_particle', 1.5);



















TmatrixEbcm

Constructs a T-matrix using extended boundary conditions method.


	
class ott.TmatrixEbcm(rtp, normals, ds, varargin)

	Constructs a T-matrix using extended boundary conditions method.
Inherits from ott.Tmatrix.


	TmatrixEbcm properties:
	k_medium          Wavenumber in the surrounding medium
k_particle        Wavenumber of the particle





This class is based on tmatrix_ebcm_axisym.m from ottv1.

See also TmatrixEbcm







TmatrixMie

Construct T-matrix from Mie scattering coefficients.


	
class ott.TmatrixMie(radius, varargin)

	TmatrixMie construct T-matrix from Mie scattering coefficients


	TmatrixMie properties:
	radius            The radius of the sphere the T-matrix represents
k_medium          Wavenumber in the trapping medium
k_particle        Wavenumber of the particle





This class is based on tmatrix_mie.m and tmatrix_mie_layered.m from ottv1.







TmatrixPm

Constructs a T-matrix using the point matching method.


	
class ott.TmatrixPm(rtp, normals, varargin)

	TmatrixPm constructs a T-matrix using the point matching method


	TmatrixPm properties:
	k_medium          Wavenumber in the surrounding medium
k_particle        Wavenumber of the particle



	TmatrixPm methods:
	getInternal       Get the internal T-matrix





This class is based on tmatrix_pm.m from ottv1.







TmatrixSmarties


	
class ott.TmatrixSmarties(a, c, varargin)

	Constructs a T-matrix using SMARTIES.
Inherits from ott.Tmatrix

SMARTIES is a method for calculating T-matrices for spheroids.

This class requires the SMARTIES toolbox has been loaded onto the path.
Details about the toolbox can be found in:


Somerville, Auguié, Le Ru.  JQSRT, Volume 174, May 2016, Pages 39-55.
https://doi.org/10.1016/j.jqsrt.2016.01.005




See also TmatrixSmarties







TmatrixDda


	
class ott.TmatrixDda(xyz, varargin)

	Constructs a T-matrix using discrete dipole approximation.
Inherits from ott.Tmatrix.

To construct a T-matrix with DDA, either the simple interface or
the class constructor can be used.  Using the simple interface, the
following should produce something similar to TmatrixMie:

Tmatrix = ott.TmatrixDda.simple('sphere', 0.1, 'index_relative', 1.2);





The DDA method requires a lot of memory to calculate the T-matrix.
Most small desktop computers will be unable to calculate T-matrices
for large particles (i.e., particles larger than a couple of wavelengths
in diameter using 20 dipoles per wavelength).
For these particles, consider using Geometric Optics
or Finite Difference Time Domain method.

See also TmatrixDda, simple.


	
TmatrixDda(xyz, varargin)

	Calculates T-matrix using discrete dipole approximation.


	Usage
	TmatrixDda(xyz, …) calculates the T-matrix for the particle
described by voxels xyz.  xyz is a 3xN matrix of coordinates
for each voxel.





The method supports homogenous and inhomogenous particles.
For homogeneous particles, specify the material as a scalar,
3x1 vector or 3x3 polarizability matrix.  For inhomogeneous
particles use a N, 3xN or 3x3N vector/matrix.


	Optional named parameters
	
	Nmax      [r,c]   Size of the T-matrix to generate.
Default: ott.utils.ka2nmax(max_radius*k_medium)


	k_medium (numeric)          – Wavenumber in medium


	wavelength_medium (numeric) – Wavelength in medium


	index_medium (numeric)      – Refractive index in medium.
Default: k_medium = 2*pi


	k_particle (numeric)          – Wavenumber in particle


	wavelength_particle (numeric) – Wavelength in particle


	index_particle (numeric)      – Refractive index in particle.
Default: k_particle = 2*pi*index_relative


	polarizability (enum|numeric) – Polarizability or method
name to use to calculate from relative refractive index.
Default: ‘LDR’.  Supported methods: ‘LDR’, ‘FCD’, ‘CM’.


	index_relative (numeric)  – Relative refractive index.
Default: 1.0


	wavelength0 (numeric)     – Wavelength in vacuum.
Default: 1.0


	spacing (numeric) – spacing for estimating Nmax and
calculating the polarizability.  Only required when
polarizability is non-numeric.
Default: []


	z_mirror_symmetry (logical) – If z-mirror symmetry should
be used.  All voxels less than 0 are ignored.
Default: false.


	z_rotational_symmetry (numeric) – z-rotational symmetry.
Degree of rotational symmetry.
Objects with no rotational symetry should set this to 1.
Default: 1.


	low_memory (logical) – If true, the DDA implementation
favours additional calculations over additional memory use
allowing simualtion of larger particles.  Default: false.
Only applicable with z_mirror_symmetry and
z_rotational_symmetry.


	modes (numeric) – Specifies the modes to include in the
calculated T-matrix.  Can either be a Nx2 matrix or a N
element vector with the (n, m) modes or combined index modes
respectively.  Default: [].


	use_nearfield (logical) – If true, uses near-field point
matching.  Default: false.


	use_iterative (logical) – If true, uses an iterative solver.
Default: false.


	verbose (logical) – Display additional information.
Doesn’t affect the display of the progress callback.
Default: false.













	
static simple(shape, varargin)

	Construct a T-matrix using DDA for simple shapes.


	Usage
	simple(shape, …) constructs a new simple T-matrix for the given
ott.shapes.Shape object.

simple(name, parameters, …) constructs a new T-matrix for the
shape described by the name and parameters.
For supported shape names, see ott.shapes.Shape.simple.



	Optional named arguments:
	
	spacing (numeric)         – Spacing between dipoles.
Default: wavelength_particle/20








For other named parameters, see TmatrixDda().













            

          

      

      

    

  

    
      
          
            
  
shapes Package

This section provides an overview of the shapes currently in the toolbox.



	Base classes


	Geometric shapes


	Sets of shapes


	Procedural shapes


	File loaders







Base classes


	
class ott.shapes.Shape

	Shape abstract class for optical tweezers toolbox shapes


	Properties
	maxRadius     maximum distance from shape origin
volume        volume of shape
position      Location of shape [x, y, z]



	Methods (abstract):
	inside(shape, …) determine if spherical point is inside shape



	Methods:
	
	writeWavefrontObj(shape, …) write shape to Wavefront OBJ file
	only implemented if shape supports this action.



	insideXyz(shape, …) determine if Cartesian point is inside shape
	requires inside(shape, …) to be implemented.





simple(…) simplified constructor for shape-like objects.





See also simple, ott.shapes.Cube, ott.shapes.TriangularMesh.






	
class ott.shapes.AxisymShape

	AxisymShape abstract class for axisymetric particles


	Methods
	
	boundarypoints  calculate boudary points for surface integral






	Abstract methods
	
	radii           Calculates the particle radii for angular coordinates


	normals         Calculates the particle normals for angular coorindates


	axialSymmetry   Returns x, y, z rotational symmetry (0 for infinite)













	
class ott.shapes.StarShape

	StarShape abstract class for star shaped particles


	Abstract methods:
	radii           Calculates the particle radii for angular coordinates
normals         Calculates the particle normals for angular coorindates
axialSymmetry   Returns x, y, z rotational symmetry (0 for infinite)
mirrorSymmetry  Returns x, y, z mirror symmetry











Geometric shapes


	
class ott.shapes.Cube(width)

	Cube a simple cube shape


	properties:
	width        % Width of the cube










	
class ott.shapes.RectangularPrism(x, y, z)

	Cube a simple cube shape


	properties:
	x        Size of prism in x direction
y        Size of prism in y direction
z        Size of prism in z direction





See also RectangularPrism and ott.shapes.Cube.






	
class ott.shapes.Cylinder(radius, height)

	Cylinder a simple cylinder shape


	properties:
	radius        % Radius of the cylinder
height        % Height of the cylinder










	
class ott.shapes.Ellipsoid(a, b, c)

	Ellipsoid a simple ellipsoid shape


	properties:
	a         % x-axis scaling
b         % y-axis scaling
c         % z-axis scaling










	
class ott.shapes.Sphere(radius, position)

	Sphere a simple sphere shape


	properties:
	radius        % Radius of the sphere










	
class ott.shapes.Superellipsoid(a, b, c, ew, ns)

	Superellipsoid a simple superellipsoid shape


	properties:
	a         % x-axis scaling
b         % y-axis scaling
c         % z-axis scaling
ew        % East-West smoothness (ew = 1 for ellipsoid)
ns        % North-South smoothness (sw = 1 for ellipsoid)











Sets of shapes

These classes can be used to create shapes by combining simple geometric
shapes or other shape objects.
For instance, the union class can be used to create a union of two
spheres:

shape1 = ott.shapes.Sphere(1.0, [0, 0, -2]);
shape2 = ott.shapes.Sphere(1.0, [0, 0,  2]);
union = ott.shapes.Union([shape1, shape2]);






	
class ott.shapes.Union(shapes)

	Represents union between two shapes.
Inherits from ott.shapes.Shape.

A point is considered to be inside the union if the point is inside
any of the shapes in the union.


	Methods
	inside    – Determine if point is inside any contained shape.



	Properties
	shapes    – Shapes contained in this union
volume    – Estimate of shape volume from sum of shapes in set
maxRadius – Estimate of shape maximum radius





See also Union


	
Union(shapes)

	Construct a new union of shapes.


	Usage
	shape = Union([shape1, shape2, …])














Todo

We will probably add other sets in future including
differences or exclusions.





Procedural shapes


	
class ott.shapes.AxisymLerp(rho, z)

	AxisymLerp a axisymmetric particle with lerping between points
Inherits from ott.shapes.StarShape and ott.shapes.AxisymShape.


	properties:
	rho        % Radial position of defining points (cylindrical coords)
z          % z position of defining points (cylindrical coords)





See also AxisymLerp






	
class ott.shapes.TriangularMesh(verts, faces)

	TriangularMesh base class for triangular mesh objects (such as file loaders)


	Properties (read-only):
	verts       3xN matrix of vertex locations
faces       3xN matrix of vertex indices describing faces





Faces vertices should be ordered so normals face outwards for
volume and inside functions to work correctly.







File loaders


	
class ott.shapes.StlLoader(filename)

	StlLoader load a shape from a STL file


	Properties:
	filename   name of the file this object loaded
verts      (TriangularMesh) 3xN matrix of vertex locations
faces      (TriangularMesh) 3xN matrix of vertex indices describing faces
maxRadius  (Shape) maximum distance from shape origin
volume     (Shape) volume of shape



	Inherited methods:
	writeWavefrontObj(shape, …) write shape to Wavefront OBJ file.
insideXyz(shape, …) determine if Cartesian point is inside shape.
voxels(shape, …) xyz coordinates for voxels inside the shape.
surf(shape, …) shape surface representation.





See also StlLoader, ott.shapes.TriangularMesh, ott.shapes.WavefrontObj.


	This class uses a 3rd party STL file reader:
	https://au.mathworks.com/matlabcentral/fileexchange/22409-stl-file-reader





See tplicenses/stl_EricJohnson.txt for information about licensing.






	
class ott.shapes.WavefrontObj(filename)

	WavefrontObj load a shape from a Wavefront OBJ file

The file format is described on the Wikipedia page.
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utils Package

This package contains functions used by other methods in the toolbox.
Most of these functions are from version 1 of the toolbox with some
minor modifications and bug fixes.


Warning

These functions are likely to move in future releases and are
not very well documented.





	Special functions


	Coordinate transformations


	Translations and rotations


	Helper functions


	Geometry functions


	Unclassified


	Polarizability calculation







Special functions


	
ott.utils.sbesselh1(n, kr, varargin)

	SBESSELH1 spherical hankel function hn(kr) of the first kind,
hn(kr) = sqrt(pi/2kr) Hn+0.5(kr).

hn = SBESSELH1(n,z) calculates spherical hankel function of first kind.

[hn,dzhn] = SBESSELH1(n,z) additionally, calculates the derivatives
of the appropriate Ricatti-Bessel function divided by z.

See also besselj and bessely.






	
ott.utils.sbesselh2(n, kr, varargin)

	SBESSELH2 spherical hankel function hn(kr) of the second kind
hn(kr) = sqrt(pi/2kr) Hn+0.5(kr)

hn = SBESSELH2(n,z) calculates the hankel function of the second kind.

[hn,dzhn] = SBESSELH2(n,z) additionally, calculates the derivative
of the appropriate Ricatti-Bessel function divided by z.

See also besselj and bessely.






	
ott.utils.sbesselh(n, htype, kr)

	SBESSELH spherical hankel function hn(kr) of the first or 
second kind hn(kr) = sqrt(pi/2kr) Hn+0.5(kr)

hn = SBESSELH(n,htype,z) computes the spherical hankel function
of degree, n, of kind, htype, and argument, z.

[hn,dzhn] = SBESSELH(n,htype,z) additionally, calculates the 
derivative of the appropriate Ricatti-Bessel function divided 
by z.

See also besselj and bessely.






	
ott.utils.sbesselj(n, kr)

	SBESSELJ spherical bessel function jn(kr)
jn(kr) = sqrt(pi/2kr) Jn+0.5(kr)

jn = SBESSEL(n,z) calculates the spherical bessel function.

[jn,dzjn] = sbessel(n,z) additionally, calculates the derivative
of the appropriate Ricatti-Bessel function divided by z.

See also besselj.






	
ott.utils.spharm(n, m, theta, phi)

	SPHARM scalar spherical harmonics and angular partial derivatives.

Y = SPHARM(n,m,theta,phi) calculates scalar spherical harmonics.

[Y,Ytheta,Yphi] = SPHARM(n,m,theta,phi) additionally, calculates
the angular partial derivatives dY/dtheta and 1/sin(theta)*dY/dphi.

SPHARM(n,theta,phi) as above but for all m.

Scalar n for the moment.

If scalar m is used Y is a vector of length(theta,phi) and is
completely compatible with previous versions of the toolbox. If vector m
is present the output will be a matrix with rows of length(theta,phi) for
m columns.

“Out of range” n and m result in return of Y = 0






	
ott.utils.vsh(n, m, theta, phi)

	VSH calculate vector spherical harmonics

[B,C,P] = VSH(n,m,theta,phi) calculates vector spherical harmonics
for the locations theta, phi.  Vector m allowed.  Scalar n for the moment.

[B,C,P] = VSH(n,theta,phi) outputs for all possible m.

If scalar m: B,C,P are arrays of size length(theta,phi) x 3
If vector m: B,C,P are arrays of size length((theta,phi),m) x 3
theta and phi can be vectors (of equal length) or scalar.

The three components of each vector are [r,theta,phi]

“Out of range” n and m result in return of [0 0 0]






	
ott.utils.vswf(n, m, kr, theta, phi, htype)

	VSWF vector spherical wavefunctions: M_k, N_k.

[M1,N1,M2,N2,M3,N3] = VSWF(n,m,kr,theta,phi) calculates the
outgoing M1,N1, incomming M2,N2 and regular M3,N3 VSWF.
kr, theta, phi are vectors of equal length, or scalar.

[M,N] = VSWF(n,m,kr,theta,phi,type) calculates only the
requested VSWF, where type is


1 -> outgoing solution - h(1)
2 -> incoming solution - h(2)
3 -> regular solution - j (ie RgM, RgN)




VSWF(n, kr, theta, phi) if m is omitted, will calculate for all m.

M,N are arrays of size length(vector_input,m) x 3

The three components of each vector are [r,theta,phi].

“Out of range” n and m result in return of [0 0 0]






	
ott.utils.vswfcart(n, m, kr, theta, phi, htype)

	VSWFCART vector spherical harmonics spherical coordinate input,
cartesian output.

[M1,N1,M2,N2,M3,N3] = VSWFCART(n,m,kr,theta,phi) calculates the
outgoing M1,N1, incomming M2,N2 and regular M3,N3 VSWF.
kr, theta, phi are vectors of equal length, or scalar.

[M,N] = VSWFCART(n,m,kr,theta,phi,type) calculates only the
requested VSWF, where type is


1 -> outgoing solution - h(1)
2 -> incoming solution - h(2)
3 -> regular solution - j (ie RgM, RgN)




Scalar n,m for the moment.
M,N are arrays of size length(vector_input) x 3

The three components of each input vector are [kr,theta,phi]
The three components of each output vector are [x,y,z]

“Out of range” n and m result in return of [0 0 0]

At the coordinate origin (kr == 0) we use only theta/phi.







Coordinate transformations


	
ott.utils.rtp2xyz(r, theta, phi)

	
	RTP2XYZ coordinate transformation from spherical to cartesian
	r      radial distance [0, Inf)
theta  polar angle, measured from +z axis [0, pi]
phi    azimuthal angle, measured from +x towards +y axes [0, 2*pi)





[x,y,z] = RTP2XYZ(r,theta,phi) takes vectors or scalars, outputs
the spherical coordinates as vectors/scalars of the same size.

[x,y,z] = RTP2XYZ(r) same as above but with the coordinate
packed into the vector/matrix r = [ r theta phi ].

x = RTP2XYZ(…) same as above with the result packed into
the vector/matrix x = [ x y z ].






	
ott.utils.rtpv2xyzv(rv, thetav, phiv, r, theta, phi)

	RTPV2XYZV spherical to cartiesn vector field conversion

[xv,yv,zv,x,y,z] = RTPV2XYZV(rv,thetav,phiv,r,theta,phi)

[vec_cart,pos_cart] = rtpv2xyzv(vec,pos)

Inputs must be column vectors or Nx3 matrices.

See also rtp2xyz and xyzv2rtpv.






	
ott.utils.xyz2rtp(x, y, z)

	
	XYZ2RTP coordinate transformation from cartesian to spherical
	r      radial distance [0, Inf)
theta  polar angle, measured from +z axis [0, pi]
phi    azimuthal angle, measured from +x towards +y axes [0, 2*pi)





[r,theta,phi] = XYZ2RTP(x,y,z) takes vectors or scalars outputs
the spherical coordinates as vectors/scalars of the same size.

[r,theta,phi] = XYZ2RTP(x) same as above but with the coordinate
packed into the vector/matrix x = [ x y z ].

r = XYZ2RTP(…) same as above with the result packed into
the vector/matrix r = [ r theta phi ].






	
ott.utils.xyzv2rtpv(xv, yv, zv, x, y, z)

	XYZV2RTPV cartiesian to spherical vector field conversion

[rv,thetav,phiv,r,theta,phi] = XYZV2RTPV(xv,yv,zv,x,y,z)

[vec_sph,pos_sph] = XYZV2RTPV(vec_cart,pos_cart)

See also rtpv2xyzv and xyz2rtp.







Translations and rotations


	
ott.utils.translate_z(nmax, z, varargin)

	Calculates translation matrices for translation of VSWFs along z axis.


	Usage
	[A,B] = translate_z(nmax,z) calculates translation matrices.
The matrices are use as:


\[ \begin{align}\begin{aligned}M' = A M + B N\\N' = B M + A N\end{aligned}\end{align} \]

[A,B,C] = ott.utils.translate_z(nmax,z) additionally, calculates C,
the scalar SWF translation coefficients in 3d packed form.



	Parameters
	
	nmax (int) – Determines the number of multipole terms to include
in the translation matrices (multipole order).  Can be a single
integer or two integers for the [row, column] nmax.
If the row, column indices don’t match, A and B will not be square.


	z (numeric) – Translation distance.








A and B are sparse matrices, since only m’ = m VSWFs couple

If z is a vector/matrix only A’s and B’s will be outputted. A and B will
be cells of matrices the length of the number of elements in z. To save
time only use unique values of z.

Time may be saved by taking the conjugate transpose instead of
calculating translations in the positive or negative direction.


	Optional named parameters
	
	‘type’ (enum)   –  Type of translation matrix to generate.


	‘method’ (enum) –  Method to calculate translation matrix.






	Translation matrix types
	
	‘sbesselj’            regular to regular.  Default.  Used for
most particle or beam translations.


	‘sbesselh1’           outgoing to regular.  Can be useful for
doing multiple scattering calculations.


	‘sbesselh2’           incoming to regular


	‘sbesselh1farfield’   outgoing to regular far-field limit


	‘sbesselh2farfield’   incoming to regular far-field limit






	Methods
	
	‘gumerov’     –  Use Gumerov method (default, recommended)


	‘videen’      –  Use Videen method.  (not recommended for
large translations of the beam, unstable)






	Example usage
	The following example calculates the A and B translation matrices
and applies them to a Gaussian beam.  A procedure similar to this
is done when calling Bsc.translateZ with a distance:

beam = ott.BscPmGauss('NA', 0.9, 'index_medium', 1.0, ...
    'polarisation', [1, 0], 'wavelength0', 1064e-9);

z = 1.0e-6 ./ beam.wavelength;
[A, B] = translate_z([beam.Nmax, beam.Nmax], z);

% Apply translation matrices
new_beam = beam.translate(A, B);














	
ott.utils.rotx(angle_deg, varargin)

	Create a 3x3 rotation matrix for rotation about x axis

R = rotx(angle_deg) calculate the rotation matrix for rotations from
the +z towards +y axis.

R = rotx([a1, a2, a3, …]) returns a 3xN matrix of rotation matrices
for each angle in the input.


	Optional named arguments:
	
	usecell    bool     True to output as cell array instead of 3xN matrix.
	Default: false.  The cell array has the same shape as angle_deg.









Replacement/extension to Matlab rotx function provided in the
Phased Array System Toolbox.






	
ott.utils.roty(angle_deg, varargin)

	Create a 3x3 rotation matrix for rotation about y axis

R = roty(angle_deg) calculate the rotation matrix for rotations from
the +z towards +x axis.

R = roty([a1, a2, a3, …]) returns a 3xN matrix of rotation matrices
for each angle in the input.


	Optional named arguments:
	
	usecell    bool     True to output as cell array instead of 3xN matrix.
	Default: false.  The cell array has the same shape as angle_deg.









Replacement/extension to Matlab roty function provided in the
Phased Array System Toolbox.






	
ott.utils.rotz(angle_deg, varargin)

	Create a 3x3 rotation matrix for rotation about z axis

R = rotz(angle_deg) calculate the rotation matrix for rotations from
the +x towards +y axis.

R = rotz([a1, a2, a3, …]) returns a 3xN matrix of rotation matrices
for each angle in the input.


	Optional named arguments:
	
	usecell    bool     True to output as cell array instead of 3xN matrix.
	Default: false.  The cell array has the same shape as angle_deg.









Replacement/extension to Matlab rotz function provided in the
Phased Array System Toolbox.






	
ott.utils.rotation_matrix(rot_axis, rot_angle)

	ROTATION_MATRIX calculates rotation matrix using Euler-Rodrigues formula.

R = rotation_matrix( axis, angle ) calculates the rotation about
axis by angle (in radians).

R = rotation_matrix( axis_angle ) calculates the rotation about vector
axis_angle, the angle is specified as the length of the vector (in radians).






	
ott.utils.wigner_rotation_matrix(nmax, R)

	WIGNER_ROTATION_MATRIX rotation matrix for rotation of spherical
harmonics or T-matrices.

D = WIGNER_ROTATION_MATRIX(nmax,R) calculates the rotation matrix
for the VSH given a 3x3 coordinate rotation matrix R.  Usage: a’ = D a.

This method from Choi et al., J. Chem. Phys. 111: 8825-8831 (1999)
Note change in notation - here, use x’ = Rx (x is row vector),
a’ = Da (a is column vector) etc.







Helper functions


	
ott.utils.matchsize(varargin)

	Checks that all vector inputs have the same number of rows.


	Usage
	[A,B,…] = matchsize(A,B,…) checks inputs have same number of rows,
and expands single-row inputs by repetition to match the input row number.



	Parameters
	
	A,B,… (numeric)  – Numeric arrays whose number of rows
are to be matched.






	Example
	The following example shows has two inputs, a scalar and a row vector.
The scalar is duplicated to match the length of the row vector:

A = 5;
B = [1; 2; 3];

[A,B] = matchsize(A, B);
disp(A)  % -> [5; 5; 5]
disp(B)  % -> [1; 2; 3]














	
ott.utils.threewide(a)

	
	THREEWIDE creates colum vector with input repeated in 3 columns
	the function can take a column of row vector input, the output
will be a matrix with three columns.





You might find this useful for multiplying a vector of scalars
with a column vector of 3-vectors.






	
ott.utils.iseven(input)

	ISEVEN determines if an integer is even
Outputs a matrix of the same size as input with 1
for even and 0 for odd entries.

Warning: Plays up if the the integer is of the order 10^16






	
ott.utils.isodd(input)

	ISODD determines if an integer is odd
Outputs a matrix the same size as input with
1 for odd and 0 for even entries.

Warning: Plays up if the the integer is of the order 10^16






	
ott.utils.rotate_3x3tensor(ualpha, varargin)

	Apply a set of rotations to a 3x3 tensor

alpha = rotate_3x3tensor(ualpha, R, …) applies the operation
alpha = R*ualpha*inv(R) if R is a 3x3N matrix of rotation matrices.

alpha = rotate_3x3tensor(ualpha, ‘direction’, dir, …) computes
the appropriate rotation rotation matrix to rotate from the z-axis
to the 3xN matrix of directions.  This is useful for uniaxial materials.
‘direction’ is the [x; y; z] Cartesian coordinate.
‘sphdirection’ is the [phi; theta] Spherical coordinate.


	Optional named parameters:
	
	‘inverse’     bool     When true, returns the inverse polarisability.
	Default: false.














	
ott.utils.ka2nmax(ka)

	Finds a reasonable Nmax to truncate at for given size parameter


	Usage
	Nmax = ka2nmax(ka) calculates reasonable maximum order, Nmax, to
truncate beam beam coefficients/T-matrix at for a given size parameter.





Returns \(Nmax = |ka| + 3 (|ka|)^(1/3)\)






	
ott.utils.nmax2ka(Nmax)

	NMAX2KA finds size parameter ka corresponding to Nmax

ka = NMAX2KA(Nmax) finds size parameter for maximum order, Nmax,
which spherical expansions are truncated.

Truncation order is given by Nmax = ka + 3 (ka)^(1/3)









Geometry functions


	
ott.utils.angulargrid(ntheta, nphi, behaviour)

	ANGULARGRID makes a angular grid of points over a sphere

[theta,phi] = ANGULARGRID(N) generates two column N^2-by-1 matrices
with theta (polar) and phi (azimuthal) angle pairs for N discrete
evenly spaced polar and azimuthal angles.

[theta,phi] = ANGULARGRID(ntheta, nphi) specifies the number of
evenly spaced points to use in the theta and phi direction.

[theta,phi] = ANGULARGRID(…, behaviour) uses behaviour to control
the output type:


behaviour | output


0     | column vectors of all points
1     | vectors of all theta and phi values 
2     | ntheta x nphi matrix of all points




Note that the output data values are the same for
behaviours 0 and 2; they’re just arranged differently.
To convert from one format to another:
2 -> 0: theta = theta(:); phi = phi(:);
0 -> 2: theta = reshape(theta,ntheta,nphi);


phi = reshape(phi,ntheta,nphi);










	
ott.utils.perpcomponent(A, n)

	PERPCOMPONENT finds perpendicular (and optionally) parallel
components of a vector relative to a reference vector.

perp_component = PERPCOMPONENT(A,n) calculates perpendicular component
of row vector A or Nx3 matrix A of vectors.  n is the reference vector.

[perp_component,parallel_component] = PERPCOMPONENT(A,n) calculates
perpendicular and parallel components.






	
ott.utils.inpolyhedron(varargin)

	INPOLYHEDRON  Tests if points are inside a 3D triangulated (faces/vertices) surface


IN = INPOLYHEDRON(FV,QPTS) tests if the query points (QPTS) are inside
the patch/surface/polyhedron defined by FV (a structure with fields
‘vertices’ and ‘faces’). QPTS is an N-by-3 set of XYZ coordinates. IN
is an N-by-1 logical vector which will be TRUE for each query point
inside the surface. By convention, surface normals point OUT from the
object (see FLIPNORMALS option below if to reverse this convention).

INPOLYHEDRON(FACES,VERTICES,…) takes faces/vertices separately, rather than in
an FV structure.

IN = INPOLYHEDRON(…, X, Y, Z) voxelises a mask of 3D gridded query points
rather than an N-by-3 array of points. X, Y, and Z coordinates of the grid
supplied in XVEC, YVEC, and ZVEC respectively. IN will return as a 3D logical
volume with SIZE(IN) = [LENGTH(YVEC) LENGTH(XVEC) LENGTH(ZVEC)], equivalent to
syntax used by MESHGRID. INPOLYHEDRON handles this input faster and with a lower 
memory footprint than using MESHGRID to make full X, Y, Z query points matrices.

INPOLYHEDRON(…,’PropertyName’,VALUE,’PropertyName’,VALUE,…) tests query
points using the following optional property values:

TOL           - Tolerance on the tests for “inside” the surface. You can think of
tol as the distance a point may possibly lie above/below the surface, and still
be perceived as on the surface. Due to numerical rounding nothing can ever be
done exactly here. Defaults to ZERO. Note that in the current implementation TOL
only affects points lying above/below a surface triangle (in the Z-direction).
Points coincident with a vertex in the XY plane are considered INside the surface.
More formal rules can be implemented with input/feedback from users.

GRIDSIZE      - Internally, INPOLYHEDRON uses a divide-and-conquer algorithm to
split all faces into a chessboard-like grid of GRIDSIZE-by-GRIDSIZE regions.
Performance will be a tradeoff between a small GRIDSIZE (few iterations, more
data per iteration) and a large GRIDSIZE (many iterations of small data
calculations). The sweet-spot has been experimentally determined (on a win64
system) to be correlated with the number of faces/vertices. You can overwrite
this automatically computed choice by specifying a GRIDSIZE parameter.

FACENORMALS   - By default, the normals to the FACE triangles are computed as the
cross-product of the first two triangle edges. You may optionally specify face
normals here if they have been pre-computed.

FLIPNORMALS   - (Defaults FALSE). To match a wider convention, triangle
face normals are presumed to point OUT from the object’s surface. If
your surface normals are defined pointing IN, then you should set the
FLIPNORMALS option to TRUE to use the reverse of this convention.


	Example:
	tmpvol = zeros(20,20,20);       % Empty voxel volume
tmpvol(5:15,8:12,8:12) = 1;     % Turn some voxels on
tmpvol(8:12,5:15,8:12) = 1;
tmpvol(8:12,8:12,5:15) = 1;
fv = isosurface(tmpvol, 0.99);  % Create the patch object
fv.faces = fliplr(fv.faces);    % Ensure normals point OUT
% Test SCATTERED query points
pts = rand(200,3)*12 + 4;       % Make some query points
in = inpolyhedron(fv, pts);     % Test which are inside the patch
figure, hold on, view(3)        % Display the result
patch(fv,’FaceColor’,’g’,’FaceAlpha’,0.2)
plot3(pts(in,1),pts(in,2),pts(in,3),’bo’,’MarkerFaceColor’,’b’)
plot3(pts(~in,1),pts(~in,2),pts(~in,3),’ro’), axis image
% Test STRUCTURED GRID of query points
gridLocs = 3:2.1:19;
[x,y,z] = meshgrid(gridLocs,gridLocs,gridLocs);
in = inpolyhedron(fv, gridLocs,gridLocs,gridLocs);
figure, hold on, view(3)        % Display the result
patch(fv,’FaceColor’,’g’,’FaceAlpha’,0.2)
plot3(x(in), y(in), z(in),’bo’,’MarkerFaceColor’,’b’)
plot3(x(~in),y(~in),z(~in),’ro’), axis image








See also: UNIFYMESHNORMALS (on the <a href=”http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=43013”>file exchange</a>)

This is a third party function, not part of OTTv2, see tplicenses/stl_Sven.txt
for information about licensing.







Unclassified


Todo

These functions should be moved to other categories




	
ott.utils.paraxial_transformation_matrix(paraxial_order, basis_in, basis_out, normal_mode)

	PARAXIAL_TRANSFORMATION_MATRIX produces paraxial beam mode conversion
in a particular order.


	[modeweights, col_modes, row_modes] = …
	PARAXIAL_TRANSFORMATION_MATRIX(degree, basis_in, basis_out) or



	[modeweights, col_modes, row_modes] = …
	PARAXIAL_TRANSFORMATION_MATRIX( degree, basis_in, basis_out, normal_mode)





inputs:

degree : paraxial degree of modes e.g. gaussian is 0.
basis_in : 0 vortex LG, 1 vortex HG, [2,xi] vortex IG.
basis_out : 0 LG, 1 HG, [2,xi] IG.
normal_mode : 0 is default vortex->non-vortex. (because of toolbox modes)


1 makes the conversion non-vortex->non-vortex.




outputs:


	modeweightsweights of the conversion basis_in->basis_out. Format: each
	row is the corresponding mode of the output basis, each
column for the input basis, such that
conj. tranpose(basis_1 –> basis_2) = basis_2 –> basis_1.
holds for (vortex->non-vortex)’ == non-vortex->vortex.



	col_modesoutputs the LG, HG or IG indices corresponding to each
	COLUMN of the matrix. [p,l], [m,n], [o,m,p].



	row_modesoutputs the LG, HG or IG indices corresponding to each ROW
	of the matrix. [p,l], [m,n], [o,m,p].










	
ott.utils.paraxial_beam_waist(paraxial_order)

	




	
ott.utils.lgmode(p, l, r, phi, z, theta)

	LGMODE calculates LG mode amplitude at z = 0

A = LGMODE(p,l,r,phi) calculates the LG mode amplitude for mode [p,l]
at locations given in polar coordinates [r, phi].
r is in units of the beam width; r and phi can be matrices of equal size.

A = LGMODE(p,l,r,phi,z) computes the modes with z as well.

A = LGMODE(p,l,r,phi,z,theta) scales the beam waist according to the
beam convergence angle theta (in degrees): w0=1/tan(theta).






	
ott.utils.legendrerow(n, theta)

	LEGENDREROW gives the spherical coordinate recursion in m

pnm = LEGENDREROW(n, theta) gives the spherical recursion for a given
n, theta.

This provides approximately no benefit over the MATLAB implimentation. It
may provide a benefit in Octave. Inspiration from
[Holmes and Featherstone, 2002] and [Jekeli et al., 2007].






	
ott.utils.laguerre(p, l, X)

	LAGUERRE associated Laguerre function

L = LAGUERRE(p,l,X) evaluate associated Laguerre function.
p and l must be integer scalars greater than zero






	
ott.utils.incecoefficients(p, xi)

	




	
ott.utils.hgmode(m, n, x, y, z, theta)

	




	
ott.utils.hermite(n, X)

	




	
ott.utils.emField(krtp, type, nm, ab, varargin)

	EMFIELD calculates field from the vector spherical wave functions

[E, H, data] = emField(krtp, type, nm, ab, …) calculates the
E and H field for unit-less spherical coordinates krtp.
krtp is a Nx3 matrix of [radial, polar, azimuthal] coordinates.
type must be ‘incoming’, ‘regular’, or ‘outgoing’.


	Optional named parameters:
	
	‘saveData’  bool    saves data that can be used for repeated
	calculations of the fields at these locations (default: nargout==3).





‘data’      data    data to use from previous calculation
‘calcE’     bool    calculate E field (default: true)
‘calcH’     bool    calculate H field (default: true)





If internal fields are calculated only the theta and phi components
of E are continuous at the boundary. Conversely, only the kr component of
D is continuous at the boundary.






	
ott.utils.combined_index(in1, in2)

	COMBINED_INDEX translates between (n,m) and combined index
Mode indices and combined index are related by: ci = n * (n+1) + m.

[n,m] = COMBINED_INDEX(ci) calculates (n,m) from the combined index.

ci = COMBINED_INDEX(n,m) calculates the combined index from mode indices.

length = COMBINED_INDEX(Nmax, Nmax) calculates length of the beam vectors.

Nmax = COMBINED_INDEX(length) calculates Nmax from length of beam vectors.







Polarizability calculation


	
ott.utils.polarizability.FCD(spacing, index, varargin)

	Filtered coupled dipole polarizability


	Usage
	alpha = FCD(spacing, index)
Calculates a Nx1 element vector containing the isotropic
polarizabilities for N dipoles.



	Parameters
	
	spacing (numeric scalar) – lattice spacing parameter


	index (Nx1 numeric) – Relative refractive indices for N dipoles.






	Optional named arguments
	
	k0 (numeric) – Wavenumber to scale spacing by.  Default: 2*pi.













	
ott.utils.polarizability.LDR(spacing, index, varargin)

	Lattice dispersion relation polarizablity

Polarizability calculation based on


Draine & Goodman, Beyond Clausius-Mossoti: wave propagation
on a polarizable point lattice and the discrete dipole approximation,
The Astrophysical Journal, 405:685-697, 1993 March 10





	Usage
	alpha = LDR(spacing, index, …)
Calculates a Nx1 element vector containing the isotropic
polarisabilities for N dipoles.

alpha = LDR(spacing, index, kvec, E0, …)
As above but specifies the polarisability information for use
with plane wave illumination.



	Parameters
	
	spacing (numeric scalar) – lattice spacing parameter


	index (Nx1 numeric) – Relative refractive indices for N dipoles.


	kvec (1x3 numeric) – Wave vector [kx, ky, kz]


	E0 (1x3 numeric) – E-field polarisation [Ex, Ey, Ez]






	Optional named arguments
	
	k0 (numeric) – Wavenumber to scale spacing by.  Default: 2*pi.













	
ott.utils.polarizability.CM(spacing, index)

	Clausius-Mossoti Polarizability


	Usage
	alpha = CM(spacing, index)
Calculates a Nx1 element vector containing the isotropic
polarisabilities for N dipoles.



	Parameters
	
	spacing (numeric scalar) – lattice spacing parameter


	index (Nx1 numeric) – Relative refractive indices for N dipoles.
















            

          

      

      

    

  

    
      
          
            
  
Other functions

These functions operate on beams, particles or data generated by other
methods.

There is also a ott.warning and ott.change_warning functions, for
further information about these functions, see the documentation in
their respective files.


Contents


	forcetorque


	axial_equilibrium


	find_equilibrium


	trap_stiffness


	find_traps







forcetorque


	
ott.forcetorque(ibeam, sbeam, varargin)

	FORCETORQUE calculate force/torque/spin in a 3D orthogonal space
If the beam shape coefficients are in the original coordinates,
this outputs the force, torque and spin in 3D carteisan coordinates.

Units are beam power.  Force results should be multipled by n/c
and torque results multiplied by 1/omega, assuiming the beam coefficients
already have the correct units for power.

[fxyz,txyz,sxyz] = FORCETORQUE(ibeam, sbeam) calculates the force,
torque and spin using the incident beam, ibeam, and the scattered
beam, sbeam.

Output is stored in [3, 1] column vectors.  If torque or spin are
omitted, only force or force/torque are calculated.

FORCETORQUE(ibeam, T, ‘position’, position) first applies a translation
to the beam.  position can be a 3xN array, resulting in multiple
force/torque calculations for each position.

FORCETORQUE(ibeam, T, ‘rotation’, rotation) effectively applies a
rotation to the particle by first applying the rotation to the beam,
scattering the beam by the T-matrix and applying the inverse rotation
to the scattered beam.  rotation can be a 3x3N array, resulting in
multiple calculations.

If both position and rotation are present,
the translation is applied first, followed by the rotation.
If both position and rotation are arrays, they must have the same
number of locations (N) or a single location (N=1).

ibeam can contain multiple beams.  If multiple beams are present,
the outputs are [3, nlocations, nbeams] arrays unless the
coherent argument is set to true, in which case the beams are added
after translation.

[fx,fy,fz,tx,ty,tz,sx,sy,sz] = FORCETORQUE(…) unpacks the
force/torque/spin into separate output arguments.

This uses mathematical result of Farsund et al., 1996, in the form of
Chricton and Marsden, 2000, and our standard T-matrix notation S.T.
E_{inc}=sum_{nm}(aM+bN);

This file is part of the optical tweezers toolbox.
See LICENSE.md for information about using/distributing this file.







axial_equilibrium


	
ott.axial_equilibrium(tmatrix, beam, z)

	AXIAL_EQUILIBRIUM find equilibrium position and stiffness along beam axis

[z,kz] = AXIAL_EQUILIBRIUM(T,beam) attempts to locate the equilibrium
position for the T-matrix T in beam starting with an initial
guess at z = 0.

[z,kz] = axial_equilibrium(…, initial_guess) specifies an initial guess.

This file is part of the optical tweezers toolbox.
See LICENSE.md for information about using/distributing this file.







find_equilibrium


	
ott.find_equilibrium(z, fz)

	FIND_EQUILIBRIUM estimates equilibrium positions from position-force data

zeq = find_equilibrium(z, fz) finds the axial equilibrium given two vectors
z and fz with the position and force values respectively.

Based on the code in example_gaussian from the original toolbox.

See also ott.axial_equilibrium

TODO: Generalize the code to find multiple equilibriums.
TODO: z need not be a vector of scalars, we could have a array of


position vectors representing some path we want to find the
equilibrium on.  We could do a similar thing for fz.




This file is part of the optical tweezers toolbox.
See LICENSE.md for information about using/distributing this file.







trap_stiffness


	
ott.trap_stiffness(beam, T, varargin)

	TRAP_STIFFNESS calculate the force and torque trap stiffness

[kf, kt, K] = TRAP_STIFFNESS(beam, T) calculate the trap stiffness
for the force, kf, and torque, kt for a particle, T, in a beam.
K is the full 6x2N stiffness matrix, each column corresponds to a
different direction.  K can be multiplied by the drag tensor to
calculate the fluid+optical trap stiffness.

TRAP_STIFFNESS(…, ‘position’, x0) and TRAP_STIFFNESS(, ‘rotation’, R)
specify the particle position and rotation.

TRAP_STIFFNESS(…, ‘direction’, d) specifies the directions to
calculate the trap stiffness in.  Specify ‘beam’ for the XYZ direction
for the current beam orientation.  For specific directions, specify
a 3xN matrix of vectors to calculate the force along and torque around.
Default is ‘beam’.

TRAP_STIFFNESS(…, ‘method’, m) specifies the method to use for
calculating the trap stiffness.
Supported methods [calculations direction/other]:


‘cntr’    use central differences [4/0]
‘fwd’     use forward differences [2/1]




TRAP_STIFFNESS(…, ‘step’, [ dx dt ]) specifies the position and
torque calculation step sizes (in beam units and radians).
Default: 1e-3/beam.k_medium and 1e-3.

This file is part of the optical tweezers toolbox.
See LICENSE.md for information about using/distributing this file.







find_traps


	
ott.find_traps(position, force, varargin)

	FIND_TRAPS attempt to find and characterise traps from position-force data

traps = find_traps(position, force, …) attempts to find and characterise
possible traps for the given position and force data.  Position and
force should be vectors with position and force along one axis.

The returned traps is an array of structures with information about
the trap equilibrium position, trap depth and trap stiffness and trap range.


	Optional named arguments:
	keep_unstable    bool   keep unstable equilibriums (default: false)
depth_threshold_e num   percentage of max depth for trap acceptance


Use [] for no threshold.  (default: 1e-2).





	force_zero_tol_e num    percentage zero tolerance for pre-filtering
	forces.  Use [] for no threshold.  (default: 1e-3).



	group_stable     bool   group stable traps separated by smaller
	unstable traps together (useful for finding trap depth)
(default: false)



	plot             bool   plot the traps, useful for diagnostics.
	(default: false)









See also ott.find_equilibrium ott.axial_equilibrium and ott.trap_stiffness.

This file is part of the optical tweezers toolbox.
See LICENSE.md for information about using/distributing this file.









            

          

      

      

    

  

    
      
          
            
  
Conceptual Notes

This section provides more detailed information about various
concepts used in the toolbox.  It is a response to questions we have
received about the toolbox, its accuracy and various implementation
decisions.


Contents


	Spherical wave representation


	Scattering and the Rayleigh Hypothesis


	Point-matching and angle projections


	Beam truncation angle (for ott.BscPmGauss)







Spherical wave representation

The toolbox represents fields using a vector spherical wave function (VSWF)
basis.
This basis is infinite and, with infinite basis functions, it can be used
to represent any field.
However, in practice we are often forced to choose a finite number of
basis functions to approximate our field.
The accuracy of our approximation depends on how similar our field is
to the basis functions.
For example, in the VSWF basis we can exactly
represent the quadrapole field (see Fig. 13 a) with
only a single basis function (the dipole mode).
Conversely, a plane wave would need an infinite number of basis functions
to be represented exactly.


[image: examples of VSWF fields]

Fig. 13 Three different VSWF beams.
(a) a quadrapole mode, visualised in the far-field.
(b) a plane wave, only valid within the \(N_{max}\) region
shown by the red circle.
(c) a Gaussian beam where most of the beam information passes
through the aperture shown by the white line, the equivilant
\(N_{max}\) region is shown by the red circle.



For optical scattering calculations, we often don’t need
to represent our field exactly everywhere: in most cases it is
sufficient to represent the field exactly only around the scattering object.
In a VSWF basis, we are able to accurately represent the fields in
spherical region located at the centre of our coordinate system.
The size of the region is determined by the number of
VSWF spherical modes, i.e. \(N_{max}\).
By choosing an appropriate \(N_{max}\) we are able to represent
plane waves and other non-localised waves in a finite region surrounding
our particle, as shown in Fig. 13 b.
This can create some difficulty if our particle cannot be circumscribed
by such a sphere, as is the case for infinite slabs.
For modelling scattering by infinite slabs, it would be better to
use a plane wave basis.

For certain type of beams, such as focussed Gaussian beams, most of
the information describing the beam passes through an aperture with
a finite radius, as shown in Fig. 13 c.
These beams can be represented accurately as long as \(N_{max}\)
is large enough to surround this aperture.
This is the condition used for automatic \(N_{max}\) selection
in ott.BscPmGauss.

The accuracy of translated beam depends on the \(N_{max}\) in
the translated region and the accuracy of the original beam around the
new origin.
For plane waves and other beams with infinite extent, this means that
translations outside the original \(N_{max}\) region may not be
accurate.  For the case of plane waves, this can be circumvented by
implementing translations as phase shifts.
For Gaussian beams, as long as the original beam has a large enough
\(N_{max}\) to accurately describe the beam, the beam can be translated
to almost any location (within the accuracy of the translation method).
This is illustrated in figure Fig. 14.

Translations are not typically reversible.
If the beam is translated away from the origin, the translated
\(N_{max}\) will need to be larger than the original
\(N_{max}\) in order to contain the same information.
If the \(N_{max}\) of the translated beam is not large enough,
the translation will be irreversible.


[image: Images exploring translation of different beams]

Fig. 14 Effect of regular translations on plane waves (a-c) and a
focused Gaussian beam (d-f).  (a) shows a plane wave whose Nmax
region is marked by the red dashed line.  The beam can be translated
to the blue circle accurately, shown in (b), but cannot be translated
to position outside the Nmax region such as the white circle shown in (c).
In this case, the region in (c) is still fairly flat but the amplitude
is not preserved.
(d) show a Gaussian beam with \(N_{max} = 6\) (red-line).
The beam can be translated anywhere acurately, but the translation is
only reversible if the new \(N_{max}\) includes the origin as
illustrated by (e) irreversible and (f) reversible.



The above discussion considered only incident beams.
For scattered beams, the scattering is described exactly by the
multipole expansion for the region inside the particle’s \(N_{max}\)
and the accuracy depends on how accurately the T-matrix models the
particle.
As soon as a scattered field is translated, the \(N_{max}\) at the
new coordinate origin describes the region where the fields are
accurately approximated.


Note

This section is based on the user manual for OTT 1.2.
The new text includes a discussion about non-square transations,
i.e. different original and translated \(N_{max}\).





Scattering and the Rayleigh Hypothesis

In order to represent non-spherical particles with a T-matrix we assume
the particle scatters like an inhomogeneous sphere.
The T-matrix for the light scattered by this particle is typically
only valid outside the particle’s circumscribing sphere.
This idea is illustrated in figure Fig. 15 a.
For isolated particles, this doesn’t normally cause a problem.
Care should be taken when simulating more than one particle when
the circumscribing spheres overlap, see
figure Fig. 15 b; or when using the fields
within the circumscribing sphere.


[image: a square inside a sphere and two overlapping spheres]

Fig. 15 (a) The T-matrix for a cube is calculated assuming a circumscribing
sphere (illustrated by the outer circle).
(b) Two particles whose circumscribing spheres overlap
may cause numerical difficulties.





Point-matching and angle projections

Several of the beam generation functions in the toolbox support
different angular mapping/scaling factors for the projection between
the Paraxial far-field and the angular far-field.
These factors come about due to the unwrapping of the lens hemisphere
onto a plane.
Two possible unwrapping techniques are shown in
Fig. 16 along with the corresponding
fields for a Gaussian beam using these two unwrapping methods.
One technique (the tantheta option for ott.BscPmGauss)
results in more power at higher angles.
In the paraxial limit, both these methods produce similar results.
A realistic lens is likely somewhere between these two models;
at present not all OTT functions support arbitrary mapping functions.


[image: Image describing angular scaling factor]

Fig. 16 The difference in angular scaling comes from the projection between
the lens hemisphere and the lens back-aperture.
(a) shows an illustration of the difference in power for the
sample angle with two mappings.
(b) shows the projected field of a Gaussian beam back aperture
with the \(sin(\theta)\) mapping
and (c) a \(tan(\theta)\) mapping.





Beam truncation angle (for ott.BscPmGauss)


Warning

This section will move in a future release.



ott.BscPmGauss can be used to simulate various Gaussian-like
beams.  By default, the class doesn’t truncate the beams as a
normals microscope objective would, this can be seen in the following
example (shown in figure Fig. 17):

figure();
NA = 0.8;

subplot(1, 2, 1);
beam = ott.BscPmGauss('NA', NA, 'index_medium', 1.33);
beam.basis = 'incoming';
beam.visualiseFarfield('dir', 'neg');
title('Default');

subplot(1, 2, 2);
beam = ott.BscPmGauss('NA', NA, 'index_medium', 1.33, ...
      'truncation_angle', asin(NA./1.33));
beam.basis = 'incoming';
beam.visualiseFarfield('dir', 'neg');
title('Truncated');






[image: Image describing truncation_angle paramter]

Fig. 17 Example output from the ott.BscPmGauss showing the
far-field intensity patterns of two Gaussian beams with the
same numerical aperture.  (left) shows the default output, where
the Gaussian falls off gradually to the edge of the hemisphere.
(right) shows a beam truncated, effectively simulating a
microscope back-aperture.







            

          

      

      

    

  

    
      
          
            
  
Further Reading

This page lists paper describing parts of the toolbox.

Papers describing the toolbox


	T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoener, A. M.
Branczyk, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical tweezers
computational toolbox”, Journal of Optics A 9, S196-S203 (2007)


	T. A. Nieminen, V. L. Y. Loke, G. Knoener, A. M. Branczyk, “Toolbox
for calculation of optical forces and torques”, PIERS Online 3(3),
338-342 (2007)




More about computational modelling of optical tweezers:


	T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop,
“Computational modelling of optical tweezers”, Proc. SPIE 5514,
514-523 (2004)




More about our beam multipole expansion algorithm:


	T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Multipole
expansion of strongly focussed laser beams”, Journal of Quantitative
Spectroscopy and Radiative Transfer 79-80, 1005-1017 (2003)




More about our T-matrix algorithm:


	T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Calculation
of the T-matrix: general considerations and application of the
point-matching method”, Journal of Quantitative Spectroscopy and
Radiative Transfer 79-80, 1019-1029 (2003)




The multipole rotation matrix algorithm we used:


	C. H. Choi, J. Ivanic, M. S. Gordon, K. Ruedenberg, “Rapid and stable
determination of rotation matrices between spherical harmonics by
direct recursion” Journal of Chemical Physics 111, 8825-8831 (1999)




The multipole translation algorithm we used:


	G. Videen, “Light scattering from a sphere near a plane interface”,
pp 81-96 in: F. Moreno and F. Gonzalez (eds), Light Scattering from
Microstructures, LNP 534, Springer-Verlag, Berlin, 2000




More on optical trapping landscapes:


	A. B. Stilgoe, T. A. Nieminen, G. Knoener, N. R. Heckenberg, H.
Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in
optical tweezers”, Optics Express, 15039-15051 (2008)




Multi-layer sphere algorithm:


	W. Yang, “Improved recursive algorithm for light scattering by a
multilayered sphere”, Applied Optics 42(9), (2003)







            

          

      

      

    

  

    
      
          
            
  
Documentation terms of use

This documentation is released under the Creative Commons
Attribution-NonCommercial 4.0 International Public License, available
at:

https://creativecommons.org/licenses/by-nc/4.0/legalcode
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      	AxisymLerp (class in ott.shapes)
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      	Bsc() (ott.Bsc method)


      	BscPlane (class in ott)


  

  	
      	BscPmGauss (class in ott)


      	BscPmGauss() (ott.BscPmGauss method)


      	BscPmParaxial (class in ott)
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      	CM() (in module ott.utils.polarizability)


      	combined_index() (in module ott.utils)


  

  	
      	Cube (class in ott.shapes)
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      	find_equilibrium() (in module ott)
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      	visualise() (ott.Bsc method)


      	visualiseFarfield() (ott.Bsc method)


      	visualiseFarfieldSlice() (ott.Bsc method)


  

  	
      	visualiseFarfieldSphere() (ott.Bsc method)


      	vsh() (in module ott.utils)


      	vswf() (in module ott.utils)
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      	WavefrontObj (class in ott.shapes)


  

  	
      	wigner_rotation_matrix() (in module ott.utils)
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